Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57 EeV in the northern sky using data collected over a 5 yr period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20 • radius circles. The hotspot has a Li-Ma statistical significance of 5.1σ , and is centered at R.A. = 146. • 7, decl. = 43. • 2. The position of the hotspot is about 19 • off of the supergalactic plane. The probability of a cluster of events of 5.1σ significance, appearing by chance in an isotropic cosmic-ray sky, is estimated to be 3.7 × 10 −4 (3.4σ).
The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 × 10 18 eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 × 10 18 eV and a steepening at 5.4 × 10 19 eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.
The Telescope Array (TA) experiment, located in the western desert of
Utah,USA, is designed for observation of extensive air showers from extremely
high energy cosmic rays. The experiment has a surface detector array surrounded
by three fluorescence detectors to enable simultaneous detection of shower
particles at ground level and fluorescence photons along the shower track. The
TA surface detectors and fluorescence detectors started full hybrid observation
in March, 2008. In this article we describe the design and technical features
of the TA surface detector.Comment: 32 pages, 17 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.