This is the first paper of a series aimed at studying the properties of late‐type members of young stellar kinematic groups. We concentrate our study on classical young moving groups such as the Local Association (Pleiades moving group, , IC 2391 supercluster (35 Myr), Ursa Major group (Sirius supercluster, 300 Myr), and Hyades supercluster (600 Myr), as well as on recently identified groups such as the Castor moving group (200 Myr). In this paper we compile a preliminary list of single late‐type possible members of some of these young stellar kinematic groups. Stars are selected from previously established members of stellar kinematic groups based on photometric and kinematic properties as well as from candidates based on other criteria such as their level of chromospheric activity, rotation rate and lithium abundance. Precise measurements of proper motions and parallaxes taken from the Hipparcos Catalogue, as well as from the Tycho‐2 Catalogue, and published radial velocity measurements are used to calculate the Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria in order to determine the membership of the selected stars to the different groups. Additional criteria using age‐dating methods for late‐type stars will be applied in forthcoming papers of this series. A further study of the list of stars compiled here could lead to a better understanding of the chromospheric activity and their age evolution, as well as of the star formation history in the solar neighbourhood. In addition, these stars are also potential search targets for direct imaging detection of substellar companions.
No abstract
Aims. We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood, which may be used to investigate different aspects of its formation and evolution in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods. We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF echelle package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line λ6707.8 Å and spectral types were also determined. Results. A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca ii H & K to the calcium infrared triplet and the lithium line in λ6708 Å. Fluxes in the chromospheric emission lines and R HK are also determined for each observation of a star in the sample. We used these data to investigate the emission levels of our stars. The study of the Hα emission line revealed two different populations of chromospheric emitters in the sample, clearly separated in the log F Hα /F bol − (V − J) diagram. The dichotomy may be associated with the age of the stars.
Abstract. This is the third paper of a series aimed at studying the chromosphere of active binary systems using the information provided for several optical spectroscopic features. High resolution echelle spectra including all the optical chromospheric activity indicators from the Ca ii H & K to Ca ii IRT lines are analysed here for 16 systems. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. Very broad wings have been found in the subtracted Hα profile of the very active star HU Vir. These profiles are well matched using a two-component Gaussian fit (narrow and broad) and the broad component can be interpreted as arising from microflaring. Red-shifted absorption features in the Hα line have been detected in several systems and excess emission in the blue wing of FG UMa was also detected. These features indicate that several dynamical processes, or a combination of them, may be involved. Using the E Hα /E Hβ ratio as a diagnostic we have detected prominence-like extended material viewed off the limb in many stars of the sample, and prominences viewed against the disk at some orbital phases in the dwarfs OU Gem and BF Lyn. The He i D 3 line has been detected as an absorption feature in mainly all the giants of the sample. Total filling-in of the He i D 3 , probably due to microflaring activity, is observed in HU Vir. Self-absorption with red asymmetry is detected in the Ca ii H & K lines of the giants 12 Cam, FG UMa and BM CVn. All the stars analysed show clear filled-in Ca ii IRT lines or even notable emission reversal. The small values of the E 8542 /E 8498 ratio we have found indicate Ca ii IRT emission arises from plage-like regions. Orbital phase modulation of the chromospheric emission has been detected in some systems, in the case of HU Vir evidence of an active longitude area has been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.