Interaction of CO with K-FER zeolite was investigated by a combination of variable-temperature IR spectroscopy and computational study. Calculations were performed using omega(CO)/r(CO) correlation method in combination with a periodic density functional theory model. On the basis of agreement between experimental and calculated results, the following carbonyl complexes were identified: (i) mono- and dicarbonyl C-down complexes on single K(+) sites characterized by IR absorption bands at 2163 and 2161 cm(-1), respectively; (ii) complexes formed by CO bridging two K(+) ions separated by about 7-8 A (dual sites) characterized by a band at 2148 cm(-1); and (iii) isocarbonyl (O-down) complexes characterized by a band at 2116 cm(-1). The bridged carbonyl complexes on dual K(+) sites are about 5 kJ/mol more stable than monodentate (monocarbonyl) CO complexes. The C-O stretching frequency of monocarbonyl species in K-FER depends on K(+) location in the zeolite, and not on K(+) coordination to the framework. A combination of theoretical calculations using a periodic density functional model and experimental results showed formation of two types of monocarbonyls. The most abundant type appears at 2163 cm(-1), and the less abundant one at 2172 cm(-1). These experimentally determined wavenumber values coincide, within +/-2 cm(-1), with those derived from theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.