We present the results of the one‐year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low‐luminosity, 56Ni‐poor type II plateau event so far and one of the best core‐collapse supernovae ever. The optical and near‐infrared spectra show narrow P‐Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km s−1) of the ejected material. The optical light curves cover both the plateau phase and the late‐time radioactive tail, until about 380 d after core‐collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 d. In addition to optical observations, we also present near‐infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi‐analytic model, we infer for SN 2005cs a 56Ni mass of about 3 × 10−3 M⊙, a total ejected mass of 8–13 M⊙ and an explosion energy of about 3 × 1050 erg.
Early‐time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51) are reported. Photometric data suggest that SN 2005cs is a moderately underluminous Type II plateau SN (SN IIP). The SN was unusually blue at early epochs (U−B≈−0.9 about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He i 5876‐Å absorption component and, less clearly, of Hβ and Hα. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high‐velocity H and He i components, or (more likely) be produced by different ions (N ii, Si ii). Analogies with the low‐luminosity, 56Ni‐poor, low‐velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.
We present new optical and near‐infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L= 42.3 erg s−1 and a 56Ni mass of 0.06 ± 0.04 M⊙, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well‐studied IIP SNe and find that the kinetic energies span a range of 1050–1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre‐discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5–6 M⊙ implied from 7–8 M⊙ progenitors. The nebular phase is studied using very late‐time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 Å line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5–1.5 M⊙.
We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported γ-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the γ-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated by ∼ 90 days, with only weak γ-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the γ-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the γ-ray flaring event by a shift of its location from ∼ 1 pc to ∼ 4 pc from the central black hole. On the other hand, if the γ-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.
Extensive optical and near‐infrared (NIR) observations of the Type IIb supernova (SN IIb) 2008ax are presented, covering the first year after the explosion. The light curve is mostly similar in shape to that of the prototypical SN IIb 1993J, but shows a slightly faster decline rate at late phases and lacks the prominent narrow early‐time peak of SN 1993J. From the bolometric light curve and ejecta expansion velocities, we estimate that about 0.07–0.15 M⊙ of 56Ni was produced during the explosion and that the total ejecta mass was between 2 and 5 M⊙, with a kinetic energy of at least 1051 erg. The spectral evolution of SN 2008ax is similar to that of SN Ib/IIb 2007Y, exhibiting high‐velocity Ca ii features at early phases and signs of ejecta–wind interaction from Hα observations at late times. NIR spectra show strong He i lines similar to SN Ib 1999ex and a large number of emission features at late times. Particularly interesting are the strong, double‐peaked He i lines in late NIR spectra, which – together with the double‐peaked [O i] emission in late optical spectra – provide clues for the asymmetry and large‐scale Ni mixing in the ejecta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.