OVERVIEW OF THE LARGE HELICAL DEVICE PROJECT. The Large Helical Device (LHD) has successfully started running plasma confinement experiments after a long construction period of eight years. During the construction and machine commissioning phases, a variety of milestones were attained in fusion engineering which successfully led to the first operation, and the first plasma was ignited on 31 March 1998. Two experimental campaigns are planned in 1998. In the first campaign, the magnetic flux mapping clearly demonstrated a nested structure of magnetic surfaces. The first plasma experiments were conducted with second harmonic 84 and 82.6 GHz ECH at a heating power input of 0.35 MW. The magnetic field was set at 1.5 T in these campaigns so as to accumulate operational experience with the superconducting coils. In the second campaign, auxiliary heating with NBI at 3 MW has been carried out. Averaged electron densities of up to 6 × 10 19 m-3 , central temperatures ranging from 1.4 IAEA-F1-CN-69/OV1/4 2 to 1.5 keV and stored energies of up to 0.22 MJ have been attained despite the fact that the impurity level has not yet been minimized. The obtained scarling of energy confinement time has been found to be consistent with the ISS95 scaling law with some enhancement.
We have newly developed a large-scale equilibrium database for real-time magnetic coordinate mapping system in the Large Helical Device. Thousands of free-boundary equilibria for each vacuum configuration have been calculated under wide ranges of central beta, pressure peaking factor, toroidal current and current peaking factor. We have also prepared a line of sight database which tabulates pre-calculated mapping results for all equilibria along several selected lines of sight to accelerate the mapping procedure. A user library has been developed to retrieve results of the inverse mapping as well as additional equilibrium parameters from the databases. A mapping program iteratively searches for the best-fitted equilibrium so as to minimize the discrepancy between inboard and outboard side of an electron temperature profile measured by the Thomson scattering diagnostic. Real-time mapping of all the time slices of the Thomson data enables us to provide time evolutions of equilibrium parameters and electron temperature/density profiles as functions of effective minor radius, which can be applied specifically for subsequent analyses of transport phenomena based on experiments.
In the first four years of the LHD experiment, several encouraging results have emerged, the most significant of which is that MHD stability and good transport are compatible in the inward shifted axis configuration. The observed energy confinement at this optimal configuration is consistent with ISS95 scaling with an enhancement factor of 1.5. The confinement enhancement over the smaller heliotron devices is attributed to the high edge temperature. We find that the plasma with an average beta of 3% is stable in this configuration, even though the theoretical stability conditions of Mercier modes and pressure driven low-n modes are violated. In the low density discharges heated by NBI and ECR, internal transport barrier (ITB) and an associated high central temperature (>10 keV) are seen. The radial electric field measured in these discharges is positive (electron root) and expected to play a key role in the formation of the ITB. The positive electric field is also found to suppress the ion thermal diffusivity as predicted by neoclassical transport theory. The width of the externally imposed island is found to decrease when the plasma is collisionless with finite beta and increase when the plasma is collisional. The ICRF heating in LHD is successful and a high energy tail (up to 500 keV) has been detected for minority ion heating, demonstrating good confinement of the high energy particles. The magnetic field line structure unique to the heliotron edge configuration is confirmed by measuring the plasma density and temperature profiles on the divertor plate. A long pulse (2 min) discharge with an ICRF power of 0.4 MW has been demonstrated and the energy confinement characteristics are almost the same as those in short pulse discharges.
As the finalization of the hydrogen experiment towards the deuterium phase, the exploration of the best performance of the hydrogen plasma was intensively performed in the Large Helical Device (LHD). High ion and electron temperatures, Ti, Te, of more than 6 keV were simultaneously achieved by superimposing the high power electron cyclotron resonance heating (ECH) on the neutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid the degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value . The high regime around 4 % was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with the wide range of edge plasma parameters. Existence of no impurity accumulation regime where the high performance plasma is maintained with high power heating > 10 MW was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas ͑Rϭ3.9 m, aϭ0.6 m͒, which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection ͑NBI͒ has produced plasmas with a fusion triple product of 8ϫ10 18 keV m Ϫ3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum stored energy has reached 0.22 MJ, which corresponds to ͗͘ϭ0.7%, with neither unexpected confinement deterioration nor visible magnetohydrodynamics ͑MHD͒ instabilities. Energy confinement times, reaching 0.17 s at the maximum, have shown a trend similar to the present scaling law derived from the existing medium sized helical devices, but enhanced by 50%. The knowledge on transport, MHD, divertor, and long pulse operation, etc., are now rapidly increasing, which implies the successful progress of physics experiments on helical currentless-toroidal plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.