The present study addresses the calibration of four types of partial discharge (PD) emulators used in the development of a PD Wireless Sensor Network (WSN). Three PD emulators have been constructed: a floating-electrode emulator, and two internal PD emulators. Both DC and AC high-voltage power supplies are used to initiate PD, which is measured using concurrent free-space radiometry (FSR) and a galvanic contact method based on the IEC 60270 standard. The emulators have been measured and simulated, and a good agreement has been found for the radiated fields. A new method of estimating the absolute PD activity level from radiometric measurements is proposed
Abstract-Partial Discharge (PD) occurs when insulation containing defects or voids is subject to high voltages. If left untreated PD can degrade insulation until, eventually, catastrophic insulation failure occurs. The detection of PD current pulses, however, can allow incipient insulation faults to be identified, located and repaired prior to plant failure. Wireless technology has paved the path for PD detection and monitoring. Software Defined Radio (SDR) is a promising technology. Signals from two PD sources are received at six outdoors locations using an SDR USRP N200 which is connected to a laptop. PD sources, thereafter, are localized based on received signal strengths.
This version is available at http://eprints.hud.ac.uk/id/eprint/31039/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or notforprofit purposes without prior permission or charge, provided:• The authors, title and full bibliographic details is credited in any copy;• A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way.For more information, including our policy and submission procedure, please contact the Repository Abstract-Partial discharge (PD) is one of the predominant factors to be controlled to ensure reliability and undisrupted functions of power generators, motors, Gas Insulated Switchgear (GIS) and grid connected power distribution equipment, especially in the future smart grid. The emergence of wireless technology has provided numerous opportunities to optimise remote monitoring and control facilities that can play a significant role in ensuring swift control and restoration of HV plant equipment. In order to monitor PD, several approaches have been employed, however, the existing schemes do not provide an optimal approach for PD signal analysis, and are very costly. In this paper an RTL-SDR (Software Defined Radio) based spectrum analyser has been proposed in order to provide a potentially low cost solution for PD detection and monitoring. Initially, a portable spectrum analyser has been used for PD detection that was later replaced by an RTL-SDR device. The proposed schemes exhibit promising results for spectral detection within the VHF and UHF band.
Progress on the development of an insulation defect detection and location system using a partial discharge (PD) wireless sensor network (WSN) will be presented. Such a PD WSN based on intensityonly measurements has cost and scalability advantages over existing detection and location technologies based on timedifference-of-arrival measurements such as described in (I. E. Portugues, P. J. Moore, I. A. Glover, IEEE Trans. on Power Delivery, 1, 2009, pp. 20-29). Figure 1 shows a hypothetical deployment of the PD WSN in an electricity substation. The (red) pentagram denotes a PD source, yellow circles and triangles denote sensor nodes, and the yellow St George's cross denotes the data collection/processing node. Each node of the WSN is a broadband radiometer with a measurement band of 50-800 MHz, Figure 2. Three measurement sub-bands allow the radiometer to distinguish different forms of PD; in particular internal PD and corona discharge. WirelessHart has been selected as the network communications technology since this offers improved reliability over other standards (e.g. Zigbee) in harsh industrial environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.