SUMMARY Human pluripotent stem cells (hPSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of hPSCs into specialized cells such as spinal motoneurons1 or midbrain dopamine (DA) neurons2 has been achieved. However, the effective use of hPSCs for cell therapy has lagged behind. While mouse PSC-derived DA neurons have shown efficacy in models of Parkinson’s disease (PD)3, 4, DA neurons from human PSCs generally display poor in vivo performance5. There are also considerable safety concerns for hPSCs related to their potential for teratoma formation or neural overgrowth6, 7 Here we present a novel floor plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor plate precursors are derived from hPSCs in 11 days following exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signaling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of hPSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in PD models using three host species. Long-term engraftment in 6-OHDA-lesioned mice and rats demonstrates robust survival of midbrain DA neurons, complete restoration of amphetamine-induced rotation behavior and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into Parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell based therapies in PD.
Mutations in Pink1, a gene encoding a Ser͞Thr kinase with a mitochondrial-targeting signal, are associated with Parkinson's disease (PD), the most common movement disorder characterized by selective loss of dopaminergic neurons. The mechanism by which loss of Pink1 leads to neurodegeneration is not understood. Here we show that inhibition of Drosophila Pink1 (dPink1) function results in energy depletion, shortened lifespan, and degeneration of select indirect flight muscles and dopaminergic neurons. The muscle pathology was preceded by mitochondrial enlargement and disintegration. These phenotypes could be rescued by the wild type but not the pathogenic C-terminal deleted form of human Pink1 (hPink1). The muscle and dopaminergic phenotypes associated with dPink1 inactivation show similarity to that seen in parkin mutant flies and could be suppressed by the overexpression of Parkin but not DJ-1. Consistent with the genetic rescue results, we find that, in dPink1 RNA interference (RNAi) animals, the level of Parkin protein is significantly reduced. Together, these results implicate Pink1 and Parkin in a common pathway that regulates mitochondrial physiology and cell survival in Drosophila.mitochondria ͉ Parkinson's disease ͉ Pten-induced kinase 1 ͉ indirect flight muscle P arkinson's disease (PD) is the most common movement disorder characterized pathologically by the deficiency of brain dopamine content and the selective degeneration of dopaminergic neurons in the substantia nigra. The most common forms of PD are sporadic with no known cause. Nevertheless, postmortem studies have identified common features associated with sporadic PD, such as mitochondrial complex I dysfunction, oxidative stress, and aggregation of abnormal proteins (1, 2).Although initial studies on the etiology of PD have focused on environmental factors, recent genetic studies have firmly established the contribution of inheritable factors in PD pathogenesis (2, 3). At least ten distinct loci have been associated with rare familial forms of PD (FPD). It is anticipated that understanding the molecular lesions associated with these FPD genes will shed light on the pathogenesis of the more common forms of the disease. Dominant mutations in ␣-Synuclein (␣-Syn) and LRRK2͞dardarin and recessive mutations in parkin, DJ-1, and Pink1 have been associated with FPD (4-10). Of these five genes, ␣-Syn, parkin, and DJ-1 have been most intensively studied. Studies using in vivo animal models and in vitro cell culture have linked mutations of these genes to impairments of mitochondrial structure and function and oxidative stress response, reinforcing the general involvement of mitochondrial dysfunction and oxidative stress in PD pathogenesis (11-21). Consistent with this notion, these proteins have been shown to be present in mitochondria or interact with mitochondrial proteins (8,(22)(23)(24), suggesting that they may directly regulate mitochondria function.A further link between mitochondria and PD was supported by the fact that Pink1 encodes a predicted Se...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.