Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
The neutron-rich isotopes of cadmium up to the N ¼ 82 shell closure have been investigated by highresolution laser spectroscopy. Deep-uv excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127 Cd and 129 Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11=2 À quadrupole moments. Remarkably, this mechanism is found to act well beyond the h 11=2 shell. DOI: 10.1103/PhysRevLett.110.192501 PACS numbers: 21.10.Ky, 21.60.Cs, 31.15.aj, 32.10.Fn When first proposed, the nuclear shell model was largely justified on the basis of magnetic-dipole properties of nuclei [1]. The electric quadrupole moment could have provided an even more stringent test of the model, as it has a very characteristic linear behavior with respect to the number of valence nucleons [2,3]. However, the scarcity of experimental quadrupole moments at the time did not permit such studies. Nowadays, regardless of experimental challenges, the main difficulty is to predict which nuclei are likely to display this linear signature. The isotopes of cadmium, investigated here, proved to be the most revealing case so far. Furthermore, being in the neighborhood of the ''magic'' tin, cadmium is of general interest for at least two additional reasons. First, theory relies on nuclei near closed shells for predicting other, more complex systems. Second, our understanding of stellar nucleosynthesis strongly depends on the current knowledge of nuclear properties in the vicinity of the doubly magic tin isotopes [4]. Moreover, specific questions concerning the nuclear structure of the cadmium isotopes require critical evaluation, such as shell quenching [5,6], sphericity [7], deformation [8,9], or whether vibrational nuclei exist at all [10]. Some of these points will be addressed here quite transparently, while others require dedicated theoretical work to corroborate our conclusions. In this Letter we report advanced measurements by collinear laser spectroscopy on the very neutron-rich cadmium isotopes. Electromagnetic moments in these complex nuclei are found to behave in an extremely predictable manner. Yet, their description goes beyond conventional interpretation of the nuclear shell model.The measurements were carried out with the collinear laser spectroscopy setup at ISOLDE-CERN. High-energy protons impinging on a tungsten rod produced low-to medium-energy neutrons inducing fission in a uranium carbide target. Proton-rich spallation products, such as cesium, were largely suppressed in this manner. Further reduction of surface-ionized isobaric contamination was achieved by the use of a quartz transfer line [11], which allowed the more volatile cadmium to diffuse out of the target while impurities were retained sufficiently long to decay. Cadmium atoms were laser ionized, accelerated to an energy of 30 keV, and mass separated. The ion beam was injected into a gas-filled radio-frequency Paul trap [12]...
The nuclear charge radius of (12)Be was precisely determined using the technique of collinear laser spectroscopy on the 2s(1/2)→2p(1/2,3/2) transition in the Be(+) ion. The mean square charge radius increases from (10)Be to (12)Be by δ
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.