Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenyl-amidine) compound DB1255 as an ERG/DNA binding inhibitor using a screening test of synthetic inhibitors of the ERG/DNA interaction followed by electrophoretic mobility shift assays (EMSA) validation. Spectrometry, footprint and biosensor-surface plasmon resonance analyses of the DB1255/DNA interaction evidenced sequence selectivity and groove binding as dimer. Additional EMSA evidenced the precise DNA-binding sequence required for optimal DB1255/DNA binding and thus for an efficient ERG/DNA complex inhibition. We further highlighted the structure activity relationships from comparison with derivatives. In cellulo luciferase assay confirmed this modulation both with the constructed optimal sequences and the Osteopontin promoter known to be regulated by ERG and which ERG-binding site was protected from DNaseI digestion on binding of DB1255. These data showed for the first time the ERG/DNA complex modulation, both in vitro and in cells, by a heterocyclic diamidine that specifically targets a portion of the ERG DNA recognition site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.