The SIRTF Wide-area InfraRed Extragalactic survey (SWIRE), the largest SIRTF Legacy program, is a wide-area, imaging survey to trace the evolution of dusty, starforming galaxies, evolved stellar populations, and AGN as a function of environment, from redshifts z∼3 to the current epoch. SWIRE will survey 7 high-latitude fields, totaling 60-65 sq. deg. in all 7 SIRTF bands: IRAC 3.6, 4.5, 5.6, 8µm and MIPS 24, 70, 160µm. Extensive modeling suggests that the Legacy Extragalactic Catalog may contain in excess of 2 million IR-selected galaxies, dominated by (1) ∼150,000 luminous infrared galaxies (LIRGs: L F IR > 10 11 L ⊙) detected by MIPS (and significantly more detected by IRAC), ∼7,000 of these with z>2; (2) 1 million IRAC-detected early-type galaxies (∼ 2×10 5 with z > 1 and ∼10,000 with z > 2); and (3) ∼ 20,000 classical AGN detected with MIPS, plus significantly more dust-obscured QSO/AGN among the LIRGs. SWIRE will provide an unprecedented view of the evolution of galaxies, structure, and AGN. The key scientific goals of SWIRE are: (1) to determine the evolution of actively star-forming and passively evolving galaxies in order to understand the history of galaxy formation in the context of cosmic structure formation; (2) to determine the evolution of the spatial distribution and clustering of evolved galaxies, starbursts and AGN in the key redshift range, 0.5
We present measurements of the auto-and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500 μm (1200, 860, and 600 GHz) from observations totaling ∼70 deg 2 made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy δI /I = 14% ± 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and nonlinear (1-halo) regimes; and that the transition from the 2-to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k θ ∼ 0.10-0.12 arcmin −1 ( ∼ 2160-2380), from 250 to 500 μm. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources-suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper, we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines toward lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z ∼ 1-3, is log(M peak /M ) ∼ 12.1 ± 0.5, and that the minimum halo mass to host infrared galaxies is log(M min /M ) ∼ 10.1 ± 0.6.
Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS, GOODS-S and GOODS-N, we examine the dust properties of infrared (IR)luminous (L IR > 10 10 L ) galaxies at 0.1 < z < 2 and determine how these evolve with cosmic time. The unique angle of this work is the rigorous analysis of survey selection effects, making this the first study of the star-formation-dominated, IR-luminous population within a framework almost entirely free of selection biases. We find that IR-luminous galaxies have spectral energy distributions (SEDs) with broad far-IR peaks characterized by cool/extended dust emission and average dust temperatures in the 25-45 K range. Hot (T > 45 K) SEDs and cold (T < 25 K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity-temperature (L−T ) relation, where the average dust temperature of log [L IR /L ] ∼ 12.5 galaxies is about 10 K higher than that of their log [L IR /L ] ∼ 10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L−T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10 K lower than what is measured locally (z 0.1). This is manifested as a flattening of the L−T relation, suggesting that (ultra)luminous infrared galaxies [(U)LIRGs] in the early Universe are typically characterized by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T < 35 K showing a two-fold increase from z ∼ 0 to z ∼ 2, whereas that of ULIRGs with T < 35 K shows a six-fold increase. Our results suggest a greater diversity in the IR-luminous population at high redshift, particularly for ULIRGs.
Abstract. The Long-Wavelength Spectrometer (LWS) is one of two complementary spectrometers aboard the European Space Agency's Infrared Space Observatory 1 (ISO) (Kessler et al., 1996). It operates over the wavelength range 43 196:9 m at either medium (about 150 to 200) or high (6800 to 9700) spectral resolving power. This Letter describes the instrument and its modes of operation; a companion paper describes its performance and calibration.Send offprint requests to: P.E. Clegg (p.e.clegg@qmw.ac.uk) ? ISO is an ESA project with instruments funded by ESA Member States (especially the PI countries: France Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
We study the dust properties of galaxies in the redshift range 0.1 ≲z≲ 2.8 observed by the Herschel Space Observatory in the field of the Great Observatories Origins Deep Survey‐North as part of the PACS Extragalactic Probe (PEP) and Herschel Multi‐tiered Extragalactic Survey (HerMES) key programmes. Infrared (IR) luminosity (LIR) and dust temperature (Tdust) of galaxies are derived from the spectral energy distribution fit of the far‐IR (FIR) flux densities obtained with the PACS and SPIRE instruments onboard Herschel. As a reference sample, we also obtain IR luminosities and dust temperatures of local galaxies at z < 0.1 using AKARI and IRAS data in the field of the Sloan Digital Sky Survey. We compare the LIR–Tdust relation between the two samples and find that the median Tdust of Herschel‐selected galaxies at z≳ 0.5 with LIR≳ 5 × 1010 L⊙ appears to be 2–5 K colder than that of AKARI‐selected local galaxies with similar luminosities, and the dispersion in Tdust for high‐z galaxies increases with LIR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the LIR−Tdust relation can bridge the gap between local star‐forming galaxies and high‐z submillimetre galaxies (SMGs). We also find that three SMGs with very low Tdust (≲20 K) covered in this study have close neighbouring sources with similar 24‐μm brightness, which could lead to an overestimation of FIR/(sub)millimetre fluxes of the SMGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.