Mid-infrared photometry provides a robust technique for identifying active galaxies. While the ultraviolet to mid-infrared (k P 5 m) continuum of stellar populations is dominated by the composite blackbody curve and peaks at approximately 1.6 m, the ultraviolet to mid-infrared continuum of active galactic nuclei (AGNs) is dominated by a power law. Consequently, with a sufficient wavelength baseline, one can easily distinguish AGNs from stellar populations. Mirroring the tendency of AGNs to be bluer than galaxies in the ultraviolet, where galaxies (and stars) sample the blue, rising portion of stellar spectra, AGNs tend to be redder than galaxies in the mid-infrared, where galaxies sample the red, falling portion of the stellar spectra. We report on Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey. On the basis of this spectroscopic sample, we find that simple mid-infrared color criteria provide remarkably robust separation of active galaxies from normal galaxies and Galactic stars, with over 80% completeness and less than 20% contamination. Considering only broad-lined AGNs, these mid-infrared color criteria identify over 90% of spectroscopically identified quasars and Seyfert 1 galaxies. Applying these color criteria to the full imaging data set, we discuss the implied surface density of AGNs and find evidence for a large population of optically obscured active galaxies.
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyThe Galaxy and Mass Assembly (GAMA) survey has been operating since 2008 February on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R approximate to 1300 for 120 862 Sloan Digital Sky Survey selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 x 4 deg2 to limiting fluxes of r(pet) < 19.4, r(pet) < 19.8 and r(pet) < 19.4 mag, respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 yr, additional image analysis products (including ugrizYJHK photometry, Sersic profiles and photometric redshifts), observing mask and construction of our core survey catalogue (GamaCore). From this we create three science-ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (2008 February to April); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA Team and collaborators; and GamaCoreAtlasSV containing year 1, 2 and 3 data matched to Herschel-ATLAS science demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/
We explore the connection between different classes of active galactic nuclei (AGNs) and the evolution of their host galaxies, by deriving host galaxy properties, clustering, and Eddington ratios of AGNs selected in the radio, X-ray, and infrared (IR) wavebands. We study a sample of 585 AGNs at 0.25 < z < 0.8 using redshifts from the AGN and Galaxy Evolution Survey (AGES). We select AGNs with observations in the radio at 1.4 GHz from the Westerbork Synthesis Radio Telescope, X-rays from the Chandra XBoötes Survey, and mid-IR from the Spitzer IRAC Shallow Survey. The radio, X-ray, and IR AGN samples show modest overlap, indicating that to the flux limits of the survey, they represent largely distinct classes of AGNs. We derive host galaxy colors and luminosities, as well as Eddington ratios, for obscured or optically faint AGNs. We also measure the two-point cross-correlation between AGNs and galaxies on scales of 0.3-10 h −1 Mpc, and derive typical dark matter halo masses. We find that: (1) radio AGNs are mainly found in luminous red sequence galaxies, are strongly clustered (with M halo ∼ 3 × 10 13 h −1 M ⊙ ), and have very low Eddington ratios (λ 10 −3 ); (2) X-rayselected AGNs are preferentially found in galaxies that lie in the "green valley" of color-magnitude space and are clustered similar to typical AGES galaxies (M halo ∼ 10 13 h −1 M ⊙ ), with 10 −3 λ 1; (3) IR AGNs reside in slightly bluer, slightly less luminous galaxies than X-ray AGNs, are weakly clustered (M halo 10 12 h −1 M ⊙ ), and have λ > 10 −2 . We interpret these results in terms of a simple model of AGN and galaxy evolution, whereby a "quasar" phase and the growth of the stellar bulge occurs when a galaxy's dark matter halo reaches a critical mass between ∼10 12 and 10 13 M ⊙ . After this event, star formation ceases and AGN accretion shifts from radiatively efficient (optical-and IR-bright) to radiatively inefficient (optically faint, radio-bright) modes.
This paper describes the first catalogue of photometrically-derived stellar mass estimates for intermediate-redshift (z < 0.65; median z = 0.2) galaxies in the Galaxy And Mass Assembly (GAMA) spectroscopic redshift survey. These masses, as well as the full set of ancillary stellar population parameters, will be made public as part of GAMA data release 2. Although the GAMA database does include NIR photometry, we show that the quality of our stellar population synthesis fits is significantly poorer when these NIR data are included. Further, for a large fraction of galaxies, the stellar population parameters inferred from the optical-plus-NIR photometry are formally inconsistent with those inferred from the optical data alone. This may indicate problems in our stellar population library, or NIR data issues, or both; hese issues will be addressed for future versions of the catalogue. For now, we have chosen to base our stellar mass estimates on optical photometry only. In light of our decision to ignore the available NIR data, we examine how well stellar mass can be constrained based on optical data alone. We use generic properties of stellar population synthesis models to demonstrate that restframe colour alone is in principle a very good estimator of stellar mass-to-light ratio, M * /L i . Further, we use the observed relation between restframe (g − i) and M * /L i for real GAMA galaxies to argue that, modulo uncertainties in the stellar evolution models themselves, (g − i) colour can in practice be used to estimate M * /L i to an accuracy of 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.