Non-Celiac Gluten Sensitivity (NCGS) is a syndrome characterized by intestinal and extra-intestinal symptoms related to the ingestion of gluten-containing food, in subjects that are not affected by either celiac disease or wheat allergy. Given the lack of a NCGS biomarker, there is the need for standardizing the procedure leading to the diagnosis confirmation. In this paper we report experts’ recommendations on how the diagnostic protocol should be performed for the confirmation of NCGS. A full diagnostic procedure should assess the clinical response to the gluten-free diet (GFD) and measure the effect of a gluten challenge after a period of treatment with the GFD. The clinical evaluation is performed using a self-administered instrument incorporating a modified version of the Gastrointestinal Symptom Rating Scale. The patient identifies one to three main symptoms that are quantitatively assessed using a Numerical Rating Scale with a score ranging from 1 to 10. The double-blind placebo-controlled gluten challenge (8 g/day) includes a one-week challenge followed by a one-week washout of strict GFD and by the crossover to the second one-week challenge. The vehicle should contain cooked, homogeneously distributed gluten. At least a variation of 30% of one to three main symptoms between the gluten and the placebo challenge should be detected to discriminate a positive from a negative result. The guidelines provided in this paper will help the clinician to reach a firm and positive diagnosis of NCGS and facilitate the comparisons of different studies, if adopted internationally.
We report here the identification and characterization of a novel gene, T1 alpha, expressed in high abundance in adult rat lung, fetal lung, and early fetal brain. T1 alpha was identified by a monoclonal antibody previously shown to be specific for an antigen expressed by alveolar epithelial type I cells. The cDNA for T1 alpha is 1.85 kb and identifies a single mRNA species of the same size on Northern blots of adult rat lung. The longest open reading frame of the cDNA is 498 bases which would encode a protein of approximately 18 kDa. The protein has a putative membrane spanning domain near the C-terminus but lacks consensus sequences for N-glycosylation. Northern blots and RT-PCR show high expression of T1 alpha in adult lung, with marginally detectable expression in adult brain, intestine, and kidney. RT-PCR analysis shows expression of T1 alpha in freshly isolated type I cells (50-60% purity) but not in highly purified type II cells or other lung cells. We believe therefore that T1 alpha is primarily if not uniquely expressed in alveolar type I cells in the adult rat. Polyclonal antisera against a 16-amino-acid peptide identified in the deduced sequence reacts with the apical membranes of adult type I cells in lung tissue sections but does not label other cell types. The above antiserum as well as the original monoclonal antibody recognize a single approximately 18-kDa protein derived from bacterial expression of a construct containing the T1 alpha open reading frame. By RT-PCR T1 alpha is detected in rat lung from Day 13.5 onward, but is detected by in situ hybridization earlier in lung, brain and neural derivatives, and foregut. Expression is down-regulated in all but lung tissues as development proceeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.