Information on the size and shape of the neutron skin on (208)Pb is extracted from coherent pion photoproduction cross sections measured using the Crystal Ball detector together with the Glasgow tagger at the MAMI electron beam facility. On exploitation of an interpolated fit of a theoretical model to the measured cross sections, the half-height radius and diffuseness of the neutron distribution are found to be c(n)=6.70±0.03(stat.) fm and a(n)=0.55±0.01(stat.)(-0.03)(+0.02)(sys.) fm, respectively, corresponding to a neutron skin thickness Δr(np)=0.15±0.03(stat.)(-0.03)(+0.01)(sys.) fm. The results give the first successful extraction of a neutron skin thickness with an electromagnetic probe and indicate that the skin of (208)Pb has a halo character. The measurement provides valuable new constraints on both the structure of nuclei and the equation of state for neutron-rich matter.
Using the large acceptance apparatus FOPI, we study central collisions in the reactions (energies in A GeV are given in parentheses): 40 Ca+ 40 ). The observables include cluster multiplicities, longitudinal and transverse rapidity distributions and stopping, and radial flow. The data are compared to earlier data where possible and to transport model simulations.
Differential and total cross sections for the quasifree reactions γp → ηp and γn → ηn have been determined at the MAMI-C electron accelerator using a liquid deuterium target. Photons were produced via bremsstrahlung from the 1.5 GeV incident electron beam and energy-tagged with the Glasgow photon tagger. Decay photons of the neutral decay modes η → 2γ and η → 3π 0 → 6γ and coincident recoil nucleons were detected in a combined setup of the Crystal Ball and the TAPS calorimeters. The η-production cross sections were measured in coincidence with recoil protons, recoil neutrons, and in an inclusive mode without a condition on recoil nucleons, which allowed a check of the internal consistency of the data. The effects from nuclear Fermi motion were removed by a kinematic reconstruction of the final-state invariant mass and possible nuclear effects on the quasifree cross section were investigated by a comparison of free and quasifree proton data. The results, which represent a significant improvement in statistical quality compared to previous measurements, agree with the known neutron-to-proton cross-section ratio in the peak of the S11(1535) resonance and confirm a peak in the neutron cross section, which is absent for the proton, at a center-of-mass energy W = (1670 ± 5) MeV with an intrinsic width of Γ ≈ 30 MeV.
Collisions of Au on Au at incident energies of 150, 250 and 400 A MeV were studied with the FOPI-facility at GSI Darmstadt. Nuclear charge (Z ≤ 15) and velocity of the products were detected with full azimuthal acceptance at laboratory angles 1 • ≤ θ lab ≤ 30 • . Isotope separated light charged particles were measured with movable multiple telescopes in an angular range of 6 − 90 • . Central collisions representing about 1% of the reaction cross section were selected by requiring high total transverse energy, but vanishing sideflow. The velocity space distributions and yields of the emitted fragments are reported. The data are analysed in terms of a thermal model including radial flow. A comparison with predictions of the Quantum Molecular Model is presented.PACS: 25.70.Pq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.