We present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared selected (BzK) galaxies at z∼1.5. Our results are based on multi-configuration CO[2-1] observations obtained at the IRAM Plateau de Bure Interferometer. All six star forming galaxies observed were detected at high significance. High spatial resolution observations resolve the CO emission in four of them, implying sizes of the gas reservoirs of order of 6-11 kpc and suggesting the presence of ordered rotation. The galaxies have UV morphologies consistent with clumpy, unstable disks, and UV sizes that are consistent with those measured in CO. The star formation efficiencies are homogeneously low within the sample and similar to those of local spirals -the resulting gas depletion times are ∼ 0.5 Gyr, much higher than what is seen in high-z submm galaxies and quasars. The CO luminosities can be predicted to within 0.15 dex from the observed star formation rates and stellar masses, implying a tight correlation of the gas mass with these quantities. We use new dynamical models of clumpy disk galaxies to derive dynamical masses for our sample. These models are able to reproduce the peculiar spectral line shapes of the CO emission. After accounting for the stellar and dark matter masses we derive molecular gas reservoirs with masses of 0.4-1.2×10 11 M ⊙ . The implied conversion (CO luminosity-to-gas mass) factor is very high: α CO = 3.6 ± 0.8, consistent with a Galactic conversion factor but four times higher than that of local ultra-luminous IR galaxies that is typically used for high-redshift objects. The gas mass in these galaxies is comparable to or larger than the stellar mass, and the gas accounts for an impressive 50-65% of the baryons within the galaxies' half light radii. We are thus witnessing truly gasdominated galaxies at z ∼ 1.5, a finding that explains the high specific SFRs observed for z > 1 galaxies. The BzK galaxies can be viewed as scaled-up versions of local disk galaxies, with low efficiency star formation taking place inside extended, low excitation gas disks. These galaxies are markedly different than local ULIRGs and high-z submm galaxies and quasars, where higher excitation and more compact gas is found.
International audienceMassive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Ban
We investigate the CO excitation of normal (near-IR selected BzK) star-forming (SF) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2-1], CO , and CO[5-4] transitions for four galaxies, including VLA observations of CO[1-0] for three of them, with the aim of constraining the average state of H 2 gas. By exploiting previous knowledge of the velocity range, spatial extent, and size of the CO emission, we measure reliable line fluxes with a signal-to-noise ratio >4-7 for individual transitions. While the average CO spectral line energy distribution (SLED) has a subthermal excitation similar to the Milky Way (MW) up to CO[3-2], we show that the average CO emission is four times stronger than assuming MW excitation. This demonstrates that there is an additional component of more excited, denser, and possibly warmer molecular gas. The ratio of CO[5-4] to lower-J CO emission is lower than in local (ultra-)luminous infrared galaxies (ULIRGs) and high-redshift starbursting submillimeter galaxies, however, and appears to be closely correlated with the average intensity of the radiation field U and with the star formation surface density, but not with the star formation efficiency. The luminosity of the CO transition is found to be linearly correlated with the bolometric infrared luminosity over four orders of magnitudes. For this transition, z = 1.5 BzK galaxies follow the same linear trend as local spirals and (U)LIRGs and high-redshift star-bursting submillimeter galaxies. The CO[5-4] luminosity is thus empirically related to the dense gas and might be a more convenient way to probe it than standard high-density tracers that are much fainter than CO. We see excitation variations among our sample galaxies that can be linked to their evolutionary state and clumpiness in optical rest-frame images. In one galaxy we see spatially resolved excitation variations, where the more highly excited part of the galaxy corresponds to the location of massive SF clumps. This provides support to models that suggest that giant clumps are the main source of the high-excitation CO emission in high-redshift disk-like galaxies.
Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate. Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H 2 ) 10 5−6 cm −3 ) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO + (4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0.3 −0.5 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H 2 ) ≥ 10 5−6 cm −3 ) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1.3 kpc starburst (SB) ring. Most of the emission in HCO + , HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20 +6 −10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (M mol ∼ 2.7 +0.9 −1.2 × 10 7 M ) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM/dt ∼ 63 +21 −37 M yr −1 , is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.