Instabilities with frequency chirping in the frequency range of Alfvén eigenmodes have been found in the domain 0.1% < β h < 1% and v b /vA ∼ 1 with high energy neutral beam injection in JT-60U. One instability with a frequency inside the Alfvén continuum spectrum appears and its frequency increases slowly to the toroidicity induced Alfvén eigenmode (TAE) gap on the timescale of an equilibrium change (≈200 ms). Other instabilities appear with a frequency inside the TAE gap and their frequencies change very quickly by 10-20 kHz in 1-5 ms. During the period when these fast frequency sweeping (fast FS) modes occur, abrupt large amplitude events (ALEs) often appear with a drop of neutron emission rate and an increase in fast neutral particle fluxes. The loss of energetic ions increases with a peak fluctuation amplitude of Bθ /B θ . An energy dependence of the loss ions is observed and suggests a resonant interaction between energetic ions and the mode.
The excitation and stabilization of Alfvén eigenmodes and their impact on energetic ion confinement were investigated with negative ion based neutral beam injection at 330-360 keV into weak or reversed magnetic shear plasmas on JT-60U. Toroidicity induced Alfvén eigenmodes (TAEs) were observed in weak shear plasmas with ⟨βh⟩ ⩾ 0.1% and 0.4 ⩽ vb||/vA ⩽ 1. The stability of TAEs is consistent with predictions by the NOVA-K code. New burst modes and chirping modes were observed in the higher β regime of ⟨βh⟩ ⩾ 0.2%. The effect of TAEs, burst modes and chirping modes on fast ion confinement has been found to be small so far. It was found that a strongly reversed shear plasma with internal transport barrier suppresses AEs.
Absolutely calibrated measurements of the neutron yield are important for the evaluation of plasma performance such as the fusion gain Q in D–D operating tokamaks. The time-resolved neutron yield is measured with 235U and 238U fission chambers and 3He proportional counters in the JT-60U tokamak. The in situ calibration was performed by moving the 252Cf neutron source toroidally through the JT-60 vacuum vessel. Detection efficiencies of three 235U and two 3He detectors were measured for 92 locations of the neutron point source in toroidal scans at two different major radii. The total detection efficiency for the torus neutron source was obtained by averaging the point efficiencies over the whole toroidal angle. The uncertainty of the resulting detection efficiency for the plasma neutrons is estimated to be ±11%.
The injection performance of the negative-ion based NBI (N-NBI) system for JT-60U has been improved by correcting beamlet deflection and improving spatial uniformity of negative ion production. Beamlet deflection at the peripheral region of the grid segment due to the distorted electric field at the bottom of the extractor has been observed. This was corrected by modifying the surface geometry at the extractor to form a flat electric field. Moreover, beamlet deflection due to beamlet–beamlet repulsion caused by space charge was also compensated for by extruding the edge of the bottom extractor. This resulted in a reduction of the heat loading on the NBI port limiter. As a result of the improvement above, continuous injection of a 2.6 MW H0 beam at 355 keV has been achieved for 10 s. Thus, long pulse injection up to the nominal pulse duration of JT-60U was demonstrated. This has opened up the prospect of long pulse operation of the negative-ion based NBI system for a steady-state tokamak reactor. So far, a maximum injection power of 5.8 MW at 400 keV, with a deuterium beam, and 6.2 MW at 381 keV, with a hydrogen beam, have been achieved in the JT-60U N-NBI. Uniformity of negative ion production was improved by tuning the filament emission current so as to direct more arc power into the region where less negative ion current was extracted.
The current drive and heating properties of negative ion based NBI have been studied comprehensively in JT-60U. It has been confirmed from shine-through measurements of the injected beam (350 keV) that multistep ionization processes are essential in the ionization processes of high energy particles. The profile of the current density driven by a negative ion based NB (N-NB) has been determined experimentally. This is in good agreement with the theoretical prediction, and N-NB driven current reached 0.6 MA with EB = 360 keV and PINJ = 3.7 MW. The current drive efficiency ηCD is increased by increasing electron temperature and improved by increasing beam energy. The fast ions from N-NBs are well confined in the enhanced confinement core by the weak poloidal magnetic field of reversed shear plasmas. A clear H mode transition was obtained with N-NB dominant heating, where the net absorbed power required for an H mode transition seemed similar to the previous result obtained in JT-60U using a low energy beam (90 keV). With the strong electron heating by N-NBI (80% absorbed by electrons), an H factor ( = τE/τITER-89PLE) of 1.64 with Te(0) = 1.4Ti(0) was obtained in the steady state ELMy phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.