A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb−1 collected at √s=7 TeV in 2011 and 5.8 fb−1 at √s=8 TeV in 2012. Individual searches in the channels H→ZZ(⁎)→4ℓ, H→γγ and H→WW(⁎)→eνμν in the 8 TeV data are combined with previously published results of searches for H→ZZ(⁎), WW(⁎), bb and τ+τ− in the 7 TeV data and results from improved analyses of the H→ZZ(⁎)→4ℓ and H→γγ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0±0.4(stat)±0.4(sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9, is compatible with the production and decay of the Standard Model Higgs boson
No abstract
A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H → γγ and H → ZZ → 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m H ¼ 125.09 AE 0.21 ðstatÞ AE 0.11 ðsystÞ GeV. DOI: 10.1103/PhysRevLett.114.191803 PACS numbers: 14.80.Bn, 13.85.Qk The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the standard model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H [1-6], whose mass m H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs-boson-like properties and a mass of about 125 GeV [7][8][9]. The discovery was based primarily on mass peaks observed in the γγ and ZZ → l þ l − l 0þ l 0−(denoted H → ZZ → 4l for simplicity) decay channels, where one or both of the Z bosons can be off shell and where l and l 0 denote an electron or muon. With m H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be predicted. Increasingly precise measurements [10][11][12][13] have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.The ATLAS and CMS Collaborations have independently measured m H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb −1 of integrated luminosity at ffiffi ffi s p ¼ 7 TeV, and 20 fb −1 at ffiffi ffi s p ¼ 8 TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. [12,[14][15][16].This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m H . Besides its intrinsic importance as a fundamental parameter, improved knowledge of m H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m H is related to the values of the masses of the W boson and top quark through loopinduced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM [17] and thus to search for evidence of physics beyond the SM.The combination is performed usin...
This paper is dedicated to the memory of Professor Guido Altarelli who sadly passed away as it went to press. The results which it presents are founded on the principles and the formalism which he developed in his pioneering theoretical work on Quantum Chromodynamics in deep-inelastic lepton-nucleon scattering nearly four decades ago rent e ± p scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb −1 and span six orders of magnitude in negative four-momentum-transfer squared, Q 2 , and Bjorken x. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixedflavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in α s (M 2 Z ) = 0.1183 ± 0.0009(exp) ± 0.0005(model/parameterisation) ± 0.0012(hadronisation) and results on electroweak unification and scaling violations are also presented. H1 and ZEUS
The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944 ± 0.016 (stat) ± 0.040 (syst) was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW th reactors. The results were obtained from a single 10 m 3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter sin 2 2θ13. Analyzing both the rate of the prompt positrons and their energy spectrum we find sin 2 2θ13= 0.086 ± 0.041 (stat) ±0.030 (syst), or, at 90% CL, 0.017 < sin 2 2θ13 < 0.16. We report first results of a search for a non-zero neutrino oscillation [1] mixing angle, θ 13 , based on reactor antineutrino disappearance. This is the last of the three neutrino oscillation mixing angles [2,3] for which only upper limits [4,5] are available. The size of θ 13 sets the required sensitivity of long-baseline oscillation experiments attempting to measure CP violation in the neutrino sector or the mass hierarchy.In reactor experiments [6,7] addressing the disappearance ofν e , θ 13 determines the survival probability of electron antineutrinos at the "atmospheric" squaredmass difference, ∆m 2 atm . This probability is given by:where L is the distance from reactor to detector in meters and E the energy of the antineutrino in MeV. The full formula can be found in Ref.[1]. Eq. 1 provides a direct way to measure θ 13 since the only additional input is the well measured value of |∆m 2 atm | = (2.32Other running reactor experiments [9,10] are using the same technique.Electron antineutrinos of < 9 MeV are produced by reactors and detected through inverse beta decay (IBD): ν e + p → e + + n. Detectors based on hydrocarbon liquid scintillators provide the free proton targets. The IBD signature is a coincidence of a prompt positron signal followed by a delayed neutron capture. We present here our first results with a detector located ∼ 1050 m from the two 4.25 GW th thermal power reactors of the Chooz Nuclear Power Plant and under a 300 MWE rock overburden. The analysis is based on 101 days of data including 16 days with one reactor off and one day with both reactors off.The antineutrino flux of each reactor depends on its thermal power and, for the four main fissioning isotopes, 235 U, 239 Pu, 238 U, 241 Pu, their fraction of the total fuel content, their energy released per fission, and their fission and capture cross-sections. The fission rates and associated errors were evaluated using two predictive and complementary reactor simulation codes: MURE [17,18] and DRAGON [19]. This allowed a study of the sensitivity to the important reactor parameters (e.g.. thermal power, boron concentration, temperatures and densities). The quality of these simulations...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.