Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Comparing to the commercially available CellSearch™ system, less (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at optimal blood flow rate of 10 mL/hour) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave™ tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe3O4 magnetic nanoparticles (Veridex Ferrofluid™) conjugated to anti-Epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescently labelled anti-cytokeratin, DAPI and anti-CD45. Subsequent immunofluorescence images were taken for the captured cells, followed by comprehensive computer aided analysis based on fluorescence intensities and cell morphology. Rare cancer cells (from ~1000 cells down to ~5 cells per mL) with very low tumor cell to blood cell ratios (about 1: 107~109, including red blood cells) were successfully detected. Cancer cell capture rates of 90% and 86% were demonstrated for COLO205 and SKBR3cells, respectively.
Protein microarray technologies provide a means of investigating the proteomic content of clinical biopsy specimens in order to determine the relative activity of key nodes within cellular signaling pathways. A particular kind of protein microarray, the reverse-phase microarray, is being evaluated in clinical trials because of its potential to utilize limited amounts of cellular material obtained through biopsy. Using this approach, cellular lysates are arrayed in dilution curves on nitrocellulose substrates for subsequent probing with antibodies. To improve the sensitivity and utility of reverse-phase microarrays, we tested whether a new reporter technology as well as a new detection instrument could enhance microarray performance. We describe the use of an inorganic fluorescent nanoparticle conjugated to streptavidin, Qdot 655 Sav, in a reverse-phase protein microarray format for signal pathway profiling. Moreover, a pegylated form of this bioconjugate, Qdot 655 Sav, is found to have superior detection characteristics in assays performed on cellular protein extracts over the nonpegylated form of the bioconjugate. Hyperspectral imaging of the quantum dot microarray enabled unamplified detection of signaling proteins within defined cellular lysates, which indicates that this approach may be amenable to multiplexed, high-throughput reverse-phase protein microarrays in which numerous analytes are measured in parallel within a single spot.
Combining the power of immunomagnetic assay and microfluidic microchip operations, we successfully detected rare CTCs from clinical blood samples. The microfluidic system is operated in a flip-flop mode, where a computer-controlled rotational holder with an array of microfluidic chips inverts the microchannels. We have demonstrated both theoretically and experimentally that the direction of red blood cell (RBC) sedimentation with regards to the magnetic force required for cell separation is important for capture efficiency, throughput, and purity. The flip-flop operation reduces the stagnation of RBCs and non-specific binding on the capture surface by alternating the direction of the magnetic field with respect to gravity. The developed immunomagnetic microchip-based screening system exhibits high capture rates (more than 90%) for SkBr3, PC3, and Colo205 cell lines in spiked screening experiments and successfully isolates CTCs from patient blood samples. The proposed motion controlled microchip-based immunomagnetic system shows great promise as a clinical tool for cancer diagnosis and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.