Defectless two-dimensional photonic crystal structures have been fabricated by drilling holes in a thin multi-quantum-well InP-based heterostructure transferred onto a silicon host wafer. Extremely low group velocity modes, which correspond to the predicted photonic valence band edge, have been observed for different filling factors. Under pulsed optical pumping, room temperature laser operation around 1.5 μm has been achieved on these structures with a threshold in the milliwatt range.
Single-line photonic-crystal waveguides are investigated. Photoluminescence experiments and three-dimensional calculation are performed and allow a clear identification of the guided modes. The propagation properties of the latter (group velocity, losses) are extracted from photoluminescence spectra obtained on closed waveguides which act as linear cavities.
In order to determine the angular geometry that satisfies quasi-phase matching conditions for enhanced second-harmonic generation (SHG), the equi-frequency surfaces of the resonant photonic modes (that lie above the light line) of a one-dimensional GaN photonic crystal have been experimentally and theoretically studied as a function of frequency, angle of incidence, and azimuthal direction. Enhancement of the SHG has been observed when the angular configuration satisfies the quasi-phase matching conditions, i.e., when both the fundamental and second-harmonic fields coincide with resonant modes of the photonic crystal. The SHG enhancement achieved to the double resonance was 5000 times with respect to the unpatterned GaN layer. A smaller, but still substantially enhanced SHG level was also observed when the fundamental field is coupled into a resonant mode, while the second-harmonic field is not
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.