[1] Measurements of the column-integrated aerosol optical properties in the southern African region were made by Aerosol Robotic Network (AERONET) Sun-sky radiometers at several sites in August-September 2000 as a part of the Southern African Regional Science Initiative (SAFARI) 2000 dry season field campaign. Fine mode biomass burning aerosols dominated in the northern part of the study region (Zambia), which is an active burning region, and other aerosols including fossil fuel burning, industrial, and aeolian coarse mode types also contributed to the aerosol mixture in other regions (South Africa and Mozambique), which were not as strongly dominated by local burning. The large amount of smoke produced in the north lead to a north-south gradient in aerosol optical depth (t a ) in September, with biomass burning aerosol concentrations reduced by dispersion and deposition during transport. Large average diurnal variations of t a (typical diurnal range of 25%) were observed at all sites in Zambia as a result of large diurnal trends in fire counts in that region that peak in midafternoon. However, for all sites located downwind to the south, there was relatively little ($5-10%) average diurnal trend observed as the aerosol transport is not strongly influenced by diurnal cycles. AERONET radiometer retrievals of aerosol single scattering albedo (w 0 ) in Zambia showed relatively constant values as a function of t a for t a440 ranging from 0.4 to $2.5. The wavelength dependence of w 0 varied significantly over the region, with greater decreases for increasing wavelength at smoke-dominated sites than for sites influenced by a significant coarse mode aerosol component. Retrievals of midvisible w 0 based on the fitting of Photosynthetically Active Radiation (PAR; 400-700 nm) flux measurements to modeled fluxes for smoke in Mongu, Zambia yielded an average value of 0.84. This is in close agreement with the estimated average of 0.85 derived from interpolation of the AERONET retrievals made at 440 and 675 nm for August-September 2000. The spectral dependence of w 0 independently retrieved with the AERONET measurements and with diffuse fraction measurements in Mongu, Zambia was similar for both techniques, as a result of both methods retrieving the imaginary index of refraction ($0.030-0.035 on one day) with very little wavelength dependence.
Abstract. The physical and optical properties of biomass burning aerosols in a savanna region in south central Africa (Zambia) were analyzed from measurements made during the Zambian International Biomass Burning Emissions Experiment (ZIBBEE) during August-September 1997. Due to the large spatial extent of African savannas and the high frequency of occurrence of burning in the annual dry seasons, characterization of the optical properties of the resultant biomass burning aerosols is important for the study of atmospheric radiative processes and for remote sensing of both surface and atmospheric properties in these regions. Aerosol Robotic Network Sun-sky radiometer spectral measurements of direct Sun observations and directional sky radiances were utilized to infer spectral aerosol optical depths ('c,), aerosol size distributions, and singlescattering albedos. During the primary ZIBBEE study period, which coincided with the peak period of biomass burning in the region, there was a high correlation between the measured % and the total column water vapor or precipitable water vapor (
[1] As a representative site of the southern African biomass-burning region, sun-sky data from the 15 year Aerosol Robotic Network (AERONET) deployment at Mongu, Zambia, was analyzed. For the biomass-burning season months (July-November), we investigate seasonal trends in aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals. The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from~0.84 in July to~0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Ångström exponent (440-870 nm; r 2 = 0.02). A significant downward seasonal trend in imaginary refractive index (r 2 = 0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, burning season SSA retrievals for the Etosha Pan, Namibia AERONET site also show very similar increasing single scattering albedo values and decreasing imaginary refractive index as the season progresses. Furthermore, retrievals of SSA at 388 nm from the Ozone Monitoring Instrument satellite sensor show similar seasonal trends as observed by AERONET and suggest that this seasonal shift is widespread throughout much of southern Africa. A seasonal shift in the satellite retrieval bias of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer collection 5 dark target algorithm is consistent with this seasonal SSA trend since the algorithm assumes a constant value of SSA. Multi-angle Imaging Spectroradiometer, however, appears less sensitive to the absorption-induced bias.Citation: Eck, T. F., et al. (2013), A seasonal trend of single scattering albedo in southern African biomass-burning particles: Implications for satellite products and estimates of emissions for the world's largest biomass-burning source,
Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO 2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 • N). The sensitivity of NEE to mean annual temperature breaks down at ∼16 • C (a threshold value of mean annual temperature), above which no further increase of CO 2 uptake with temperature was observed and dryness influence overrules temperature influence.
Abstract. This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan) to 1150 mm (Republic of Congo) and include a spectrum of vegetation types (or land cover) (open savannas, woodlands, croplands and grasslands). Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments.Correspondence to: L. Merbold (lmerbold@bgc-jena.mpg.de) Values for maximum net carbon assimilation rates (photosynthesis) ranged from −12.5 µmol CO 2 m −2 s −1 in a dry, open Millet cropland (C 4 -plants) up to −48 µmol CO 2 m −2 s −1 for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (r 2 =0.74). Maximum photosynthetic uptake rates (Fp max ) were positively related to satellite-derived f APAR . Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems dominated by C 3 -plants, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.