This paper describes a precise measurement of electron scattering off the proton at momentum transfers of 0.003 Q 2 1 GeV 2 . The average point-to-point error of the cross sections in this experiment is ∼0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low Q 2 values are used for a new determination of the electric and magnetic radii. An empirical determination of the two-photon-exchange correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q² = 1 (GeV/c)² with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be ½ = 0.879(5)stat(4)syst(2)model(4)group fm and ½ = 0.777(13)stat(9)syst(5)model(2)group fm.
Measurements of midrapidity charged particle multiplicity distributions, dN ch /dη, and midrapidity transverse-energy distributions, dET /dη, are presented for a variety of collision systems and energies. Included are distributions for Au+Au collisions at For all A+A collisions down to √ s N N = 7.7 GeV, it is observed that the midrapidity data are better described by scaling withNqp than scaling with Npart. Also presented are estimates of the Bjorken energy density, εBJ, and the ratio of dET /dη to dN ch /dη, the latter of which is seen to be constant as a function of centrality for all systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.