Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented [? ]. The measurements are based on recoil electrons in the energy range 5.0-20.0 MeV. The measured solar neutrino flux is 2.32 ± 0.03 (stat.) +0.08 −0.07 (sys.) ×10 6 cm −2 s −1 , which is 45.1 ± 0.5 (stat.) +1.6 −1.4 (sys.)% of that predicted by the BP2000 SSM. The day vs night flux asymmetry (Φn − Φ d )/Φaverage is 0.033 ± 0.022 (stat.) +0.013 −0.012 (sys.). The recoil electron energy spectrum is consistent with no spectral distortion (χ 2 /d.o.f. = 19.0/18). The seasonal variation of the flux is consistent with that expected from the eccentricity of the Earth's orbit (χ 2 /d.o.f. = 3.7/7). For the hep neutrino flux, we set a 90% C.L. upper limit of 40 × 10 3 cm −2 s −1 , which is 4.3 times the BP2000 SSM prediction.22 This preprint is almost identical to the report submitted to Physical Review Letter. We have added to this preprint a few tables of
T2K (Tokai to Kamioka) is a long baseline neutrino experiment with the primary goal of measuring the neutrino mixing angle θ 13 . It uses a muon neutrino beam, produced at the J-PARC accelerator facility in Tokai, sent through a near detector complex on its way to the far detector, Super-Kamiokande. Appearance of electron neutrinos at the far detector due to oscillation is used to measure the value of θ 13 .
The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13θ13 by observing νeνe appearance in a νμνμ beam. It also aims to make a precision measurement of the known oscillation parameters, View the MathML sourceΔm232 and sin22θ23sin22θ23, via νμνμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.