High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration, in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse or electron bunch traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage. Long, thin proton bunches can be used because they undergo a process called self-modulation, a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage means that our results are an important step towards the development of future high-energy particle accelerators.
560 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P crystals providing 38 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor providing 43 fs pulse duration. To our knowledge, it is a world-record OPCPA system and one of the five most powerful laser systems currently available.
This report describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability -a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in [1].
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ∼ 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (∼ 15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.
We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.