The magnetic properties of γ-Fe2O3 ferrimagnetic nanoparticles embedded in a multiblock poly(ether-ester) copolymer have been investigated by static magnetization and ferromagnetic resonance (FMR) measurements at two different dispersion states. Significant variation of the magnetic response is identified below T≈120K, most pronounced in the marked resonance field shift of the FMR spectra, independently of the dispersion state of the nanocomposites. This behavior correlates favorably with the dynamic relaxation of the copolymer, indicating a matrix freezing effect that is attributed to the magnetoelastic coupling of the oxide nanoparticles with the surrounding polymer. At low temperatures, the dc magnetization and FMR measurements vary considerably for the two nanocomposites, indicating essential differences in their ground state, related to the different morphology of the samples and the concomitant variation of interparticle interactions.
Ferromagnetic resonance (FMR) and ac conductivity have been applied to study a polymer composite containing as filler a binary mixture of magnetite (Fe3O4) and cementite (Fe3C) nanoparticles (30–50nm) dispersed in a diamagnetic carbon matrix, which was synthesized by the carburization of nanocrystalline iron. Ac conductivity measurements showed thermally activated behavior involving a range of activation energies and power law frequency dependence at high frequencies similar to conducting polymer composites randomly filled with metal particles. Ferromagnetic resonance measurements revealed a relatively narrow FMR line at high temperatures indicating the presence of ferromagnetic nanoparticles, where thermal fluctuations and interparticle interactions determine the FMR temperature variation. An abrupt change of the FMR spectra was observed at T<81K (ΔT⩽1K) coinciding with a sharp anomaly resolved in the temperature derivative of the ac conductivity. This behavior is attributed to the Verwey transition of Fe3O4 nanoparticles, where the concurrent skin depth variation unveils the FMR of large magnetite conglomerates and thus allows discriminating their contribution from relatively isolated nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.