Results are presented from searches for the standard model Higgs boson in proton-proton collisions at root s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and 5.3 fb(-1) at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, W+W-, tau(+)tau(-), and b (b) over bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4(stat.) +/- 0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
Recent results of the searches for Supersymmetry in final states with one or two leptons at CMS are presented. Many Supersymmetry scenarios, including the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), predict a substantial amount of events containing leptons, while the largest fraction of Standard Model background events -which are QCD interactions -gets strongly reduced by requiring isolated leptons. The analyzed data was taken in 2011 and corresponds to an integrated luminosity of approximately L = 1 fb −1 . The center-of-mass energy of the pp collisions was √ s = 7 TeV.
Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at √ s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 ± 0.01 (stat.) ± 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 ± 0.01 (stat.) ± 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between −2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN ch /dη| |η|<0.5 , are 3.48 ± 0.02 (stat.) ± 0.13 (syst.) and 4.47 ± 0.04 (stat.) ± 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in pp and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.
The calibration and performance of the opposite-side flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B+→J/ψK+, B0→J/ψK∗0 and B0→D∗−μ+νμ decay modes with 0.37 fb−1 of data collected in pp collisions at during the 2011 physics run. The opposite-side tagging power is determined in the B+→J/ψK+ channel to be (2.10±0.08±0.24) %, where the first uncertainty is statistical and the second is systematic.
The production of J/ψ mesons in proton-proton collisions at √ s = 7 TeV is studied with the LHCb detector at the LHC. The differential cross-section for prompt J/ψ production is measured as a function of the J/ψ transverse momentum p T and rapidity y in the fiducial region p T ∈ [0; 14] GeV/c and y ∈ [2.0; 4 cross-section and fraction of J/ψ from b-hadron decays are also measured in the same p T and y ranges. The analysis is based on a data sample corresponding to an integrated luminosity of 5.2 pb −1 . The measured cross-sections integrated over the fiducial region are 10.52 ± 0.04 ± 1.40−2.20 µb for prompt J/ψ production and 1.14 ± 0.01 ± 0.16 µb for J/ψ from b-hadron decays, where the first uncertainty is statistical and the second systematic. The prompt J/ψ production cross-section is obtained assuming no J/ψ polarisation and the third error indicates the acceptance uncertainty due to this assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.