The European Power Plant Conceptual Study (PPCS) has been a study of the conceptual designs of five commercial fusion power plants, with the main emphasis on system integration. The study focused on five power plant models, named PPCS A, B, AB, C and D, which are illustrative of a wider spectrum of possibilities. The models are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. The PPCS allows the clarification of the concept of DEMO, the device that will bridge the gap between ITER and the first-of-a-kind fusion power plant. An assessment of the PPCS models with limited extrapolations highlighted the physics issues that must be addressed to establish the DEMO physics basis. Similarly, a review of the DEMO technical objectives brings to the fore the issues that must be addressed to establish the engineering and technological basis for DEMO.
This paper presents the latest results on confinement studies in the TJ-II stellarator. The inherently strong plasma–wall interaction of TJ-II has been successfully reduced after lithium coating by vacuum evaporation. Besides H retention and low Z, Li was chosen because there exists a reactor-oriented interest in this element, thus giving special relevance to the investigation of its properties. The Li-coating has led to important changes in plasma performance. Particularly, the effective density limit in NBI plasmas has been extended reaching central values of 8 × 1019 m−3 and T e ≈ 250–300 eV, with peaked density, rather flat T e profiles and higher ion temperatures. Due to the achieved density control, a second type of transition has been added to the low density ones previously observed in ECRH plasmas: higher density transitions characterized by the fall in Hα emission, the onset of steep density gradient and the reduction in the turbulence; which are characteristics of transition to the H mode. Confinement studies in ECH plasmas indicate that lowest order magnetic resonances, even in a low shear environment, locally reduce the effective electron heat diffusivities, while Alfven eigenmodes destabilized in NBI plasmas can influence fast ion confinement.
First plasmas have been successfully achieved in the TJ-II stellarator using electron cyclotron resonance heating (f = 53.2 GHz, P ECRH = 250 kW). Initial experiments have explored the TJ-II flexibility in a wide range of plasma volumes, different rotational transform and magnetic well values. In this paper, the main results of this campaign are presented and, in particular, the influence of plasma wall interaction phenomena on TJ-II operation is discussed briefly.
This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices.
The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.