To compare the endothelial and clinical outcome of penetrating keratoplasty with corneas stored in organ culture for up to 12 days (5-12 days; group 1) or more than 21 days (21-24 days; group 2). Methods: We conducted a controlled double-masked trial. Storage durations were randomly assigned to the paired corneas, and endothelial cell density (ECD) was measured at the start and end of organ culture. Patients with a low rejection risk and preoperative ECD within the reference range were randomly assigned to 1 of the 2 groups and underwent an 8.25-mm penetrating keratoplasty (n=25 pairs). Follow-up at day 5 and months 1, 6, and 12 included central ECD, morphometry, graft transparency, visual acuity, pachymetry, and complications. The main outcome measure was the central ECD at month 12. Results: At the end of organ culture, ECD of the group 1 corneas was higher by 273 cells/mm 2 (95% confidence interval [CI], 178-368; PϽ.001). One year after penetrating keratoplasty, the group 1 ECD was still comparably higher by 227 cells/mm 2 (95% CI, 43-411; P=.02). Graft transparency, pachymetry, and complication rate did not differ at any time. In group 1, visual acuity was better at month 1. Conclusions: Shorter organ culture allows delivery of corneas with higher ECD. Recipients with ECD within the reference range and low rejection risk retain this initial benefit 1 year postoperatively. The higher endothelial cell capital may prevent or delay late endothelial failure, the leading cause of graft failure in these recipients. We therefore prefer short-term storage for such recipients.
We report five novel VMD2 mutations in Best's macular dystrophy patients (S16F, I73N, R92H, V235L, and N296S). An SSCP analysis of the VMD2 11 exons revealed electrophoretic mobility shifts exclusively in exons 2, 3, 4, 6 and 8. Direct sequencing indicated that these shifts are caused by mono-allelic transition in exons 2, 4, 6, 8 and transversion in exons 3 and 6. Five novel "silent" polymorphisms are also reported: 213T>C, 323C>A, 1514A>G, 1661C>T, and 1712T>C. Hum Mutat 17:235, 2001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.