The astrophysical s-process is one of the two main processes forming elements heavier than iron. A key outstanding uncertainty surrounding s-process nucleosynthesis is the neutron flux generated by the 22 Ne(α, n) 25 Mg reaction during the He-core and C-shell burning phases of massive stars. This reaction, as well as the competing 22 Ne(α, γ) 26 Mg reaction, is not well constrained in the important temperature regime from ∼0.2-0.4 GK, owing to uncertainties in the nuclear properties of resonances lying within the Gamow window. To address these uncertainties, we have performed a new measurement of the 22 Ne( 6 Li, d) 26 Mg reaction in inverse kinematics, detecting the outgoing deuterons and 25,26 Mg recoils in coincidence. We have established a new n/γ decay branching ratio of 1.14(26) for the key E x = 11.32 MeV resonance in 26 Mg, which results in a new (α, n) strength for this resonance of 42(11) µeV when combined with the well-established (α, γ) strength of this resonance. We have also determined new upper limits on the α partial widths of neutron-unbound resonances at E x = 11. 112, 11.163, 11.169, and 11.171 MeV. Monte-Carlo calculations of the stellar 22 Ne(α, n) 25 Mg and 22 Ne(α, γ) 26 Mg rates, which incorporate these results, indicate that both rates are substantially lower than previously thought in the temperature range from ∼0.2-0.4 GK.
Energies and spectroscopic factors of the first 7=2 − , 3=2 − , 1=2 − , and 5=2 − states in the 35 Si 21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the 35 Si and 37 S isotones, a reduction of the p 3=2 -p 1=2 spin-orbit splitting by about 25% is proposed, while the f 7=2 -f 5=2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei. Introduction.-The spin-orbit (SO) interaction, which originates from the coupling of a particle spin with its orbital motion, plays an essential role in quantum physics. In atomic physics it causes shifts in electron energy levels due to the interaction between their spin and the magnetic field generated by their motion around the nucleus. In the field of spintronics, spin-orbit effects for electrons in materials [1] are used for several remarkable technological applications. In atomic nuclei, the amplitude of the SO interaction is very large, typically of the order of the mean binding energy of a nucleon. It is an intrinsic property of the nuclear force that must be taken into account for their quantitative description.An empirical one-body SO force was introduced in atomic nuclei in 1949 [2] to account for the magic numbers and shell gaps that could not be explained otherwise at that time. In this framework each nucleon experiences a coupling between its orbital momentum l⃗ and intrinsic spin ⃗ s. This ls coupling is attractive for nucleons having their orbital angular momentum aligned with respect to
The 12 C þ 12 C fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios. The presence of resonances in this reaction at energies around and below the Coulomb barrier makes it impossible to carry out a simple extrapolation down to the Gamow window-the energy regime relevant to carbon burning in massive stars. The 12 C þ 12 C system forms a unique laboratory for challenging the contemporary picture of deep sub-barrier fusion (possible sub-barrier hindrance) and its interplay with nuclear structure (sub-barrier resonances). Here, we show that direct measurements of the 12 C þ 12 C fusion cross section may be made into the Gamow window using an advanced particle-gamma coincidence technique. The sensitivity of this technique effectively removes ambiguities in existing measurements made with gamma ray or charged-particle detection alone. The present cross-section data span over 8 orders of magnitude and support the fusion-hindrance model at deep sub-barrier energies.
Angular distributions of the elastic, inelastic, and breakup cross sections of the halo nucleus ^{11}Be on ^{197}Au were measured at energies below (E_{lab}=31.9 MeV) and around (39.6 MeV) the Coulomb barrier. These three channels were unambiguously separated for the first time for reactions of ^{11}Be on a high-Z target at low energies. The experiment was performed at TRIUMF (Vancouver, Canada). The differential cross sections were compared with three different calculations: semiclassical, inert-core continuum-coupled-channels and continuum-coupled-channels ones with including core deformation. These results show conclusively that the elastic and inelastic differential cross sections can only be accounted for if core-excited admixtures are taken into account. The cross sections for these channels strongly depend on the B(E1) distribution in ^{11}Be, and the reaction mechanism is sensitive to the entanglement of core and halo degrees of freedom in ^{11}Be.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.