A narrow pentaquark state, P c ð4312Þ þ , decaying to J=ψp, is discovered with a statistical significance of 7.3σ in a data sample of Λ 0 b → J=ψpK − decays, which is an order of magnitude larger than that previously analyzed by the LHCb Collaboration. The P c ð4450Þ þ pentaquark structure formerly reported by LHCb is confirmed and observed to consist of two narrow overlapping peaks, P c ð4440Þ þ and P c ð4457Þ þ , where the statistical significance of this two-peak interpretation is 5.4σ. The proximity of the Σ þ cD 0 and Σ þ cD Ã0 thresholds to the observed narrow peaks suggests that they play an important role in the dynamics of these states.
This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and the number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.
A measurement of the ratio of branching fractions of the decays B þ → K þ μ þ μ − and B þ → K þ e þ e − is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0 fb −1 recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1 < q 2 < 6.0 GeV 2 =c 4 the ratio of branching fractions is measured to be R K ¼ 0.846 þ0.060 −0.054 þ0.016 −0.014 , where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R K to date and is compatible with the standard model at the level of 2.5 standard deviations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.