SummaryMeasuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO 2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO 2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid.In the framework of the CARBOEUROFLUX project, we combined quality tests described by Foken and Wichura (1996) with the analytical footprint model of Schmid (1997). The aim was to identify suitable wind sectors and meteorological conditions for flux measurements. These tools were used on data of 18 participating sites. Quality tests were applied on the fluxes of momentum, sensible and latent heat, and on the CO 2 -flux, respectively. The influence of the topography on the vertical wind component was also checked. At many sites the land use around the flux towers is not homogeneous or the fetch may not be large enough. So the relative contribution of the land use type intended to be measured was also investigated. Thus the developed tool allows comparative investigations of the measured turbulent fluxes at different sites if using the same technique and algorithms for the determination of the fluxes as well as analyses of potential problems caused by influences of the surrounding land use patterns.
The snowpack is a complex photochemical reactor that emits a wide variety of reactive molecules to the atmosphere. In particular, the photolysis of nitrate ions, NO(3)(-), produces NO, NO(2), and HONO, which affects the oxidative capacity of the atmosphere. We report measurements in the European High Arctic where we observed for the first time emissions of NO, NO(2), and HONO by the seasonal snowpack in winter, in the complete or near-complete absence of sunlight and in the absence of melting. We also detected unusually high concentrations of nitrite ions, NO(2)(-), in the snow. These results suggest that microbial activity in the snowpack is responsible for the observed emissions. Isotopic analysis of NO(2)(-) and NO(3)(-) in the snow confirm that these ions, at least in part, do not have an atmospheric origin and are most likely produced by the microbial oxidation of NH(4)(+) coming from clay minerals into NO(2)(-) and NO(3)(-). These metabolic pathways also produce NO. Subsequent dark abiotic reactions lead to NO(2) and HONO production. The snow cover is therefore not only an active photochemical reactor but also a biogeochemical reactor active in the cycling of nitrogen and it can affect atmospheric composition all year round.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.