Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
Summary1. Comparative analyses of diversity variation among and between regions allow testing of alternative explanatory models and ideas. Here, we explore the relationships between the tree α -diversity of small rain forest plots in Africa and in Amazonia and climatic
The Ngovayang Massif of southern Cameroon is a range of small hills near the Atlantic coast, in the Lower Guinea floristic region. This region is known to harbor forests with high levels of biodiversity and endemism, but this Massif is botanically poorly known. We assessed tree species diversity, floristic composition and level of endemism of the Ngovayang forest, comparing it with other sites in Central Africa. Five 1-ha permanent plots within old-growth lowland forests of the Ngovayang Massif were censused. A total of 2,658 individuals with dbh C 10 cm were recorded, belonging to 293 species, 170 genera and 60 families. The mean number of stems was 532 ± 75 stems ha -1 . Taking into account other data available, the list of vascular plants known in the Massif reaches a total of 450 species. We found 47 species of high conservation value, including Cameroon endemics and other rare and threatened species. Species richness and endemism are comparable to those of the richest known sites in Central African forests. The forests of Electronic supplementary material The online version of this article (Ngovayang were found to be particularly rich in Fabaceae-Caesalpinioideae. Topographic heterogeneity, high precipitation and atmospheric humidity owing to the proximity of the ocean, and permanence of a forest cover during past geological times probably all contribute to explaining the Massif's high tree diversity and endemism. This study highlights the botanical importance of the poorly studied Ngovayang forest within the Lower Guinea region, justifying efforts for improved assessment of this value and for the development of suitable national conservation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.