The all-sky survey in high-energy gamma rays (E>30 MeV) carried out by the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma-Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions with the local interstellar gas and radiation as well an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum and uniformity of the extragalactic emission is deduced. The analysis indicates that the extragalactic emission is well described by a power law photon spectrum with an index of -(2.10±0.03) in the 30 MeV to 100 GeV energy range. No large scale spatial anisotropy or changes in the energy spectrum are observed in the deduced extragalactic emission. The most likely explanation for the origin of this extragalactic high-energy gamma-ray emission is that it arises primarily from unresolved gamma-ray-emitting blazars.
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 m;{2} sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E-3.0 and does not exhibit prominent spectral features. Interpretations in terms of a conventional diffusive model as well as a potential local extra component are briefly discussed.
The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E [ 100 MeV) in the catalog include the single 1991 solar Ñare bright enough to be detected as a source, the Large Magellanic Cloud, Ðve pulsars, one probable radio galaxy detection (Cen A), and 66 high-conÐdence identiÐcations of blazars (BL Lac objects, Ñat-spectrum radio quasars, or unidentiÐed Ñat-spectrum radio sources). In addition, 27 lower conÐdence potential blazar identiÐcations are noted. Finally, the catalog contains 170 sources not yet identiÐed Ðrmly with known objects, although potential identiÐcations have been suggested for a number of those. A Ðgure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement, that do not appear in this catalog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.