[1] Since June 2006, simultaneous semicontinuous measurements of tropospheric molecular hydrogen (H 2 ), carbon monoxide (CO), and radon-222 ( 222 Rn) have been performed at Gif-sur-Yvette (Paris region), a suburban atmospheric measurement site in France. Molecular hydrogen mixing ratios range from 500 to 1000 ppb, CO mixing ratios vary from 100 to 1400 ppb, and 222 Rn concentrations fluctuate from 0 to 20 Bq m À3 . The H 2 seasonal cycle shows the expected pattern for the Northern Hemisphere with a maximum in spring and a minimum in autumn. We inferred a mean baseline value of 533 ppb with a peak-to-peak amplitude of 30 ppb. Carbon monoxide exhibits a seasonal cycle with a maximum in winter and a minimum in summer. The mean baseline value reaches 132 ppb with a peak-to-peak amplitude of 40 ppb. Radon-222 presents weak seasonal variations with a maximum in autumn/winter and a minimum in spring/summer. The diurnal cycles of H 2 and CO are dominated by emissions from nearby traffic with two peaks during morning and evening rush hours. The typical H 2 /CO emission ratio from traffic is found to be 0.47 ± 0.08 on a molar basis (ppb/ppb). The radon tracer method is applied to nighttime H 2 observations to estimate the H 2 soil uptake of the nocturnal catchment area of our sampling site. The influences from nocturnal local anthropogenic combustion sources are estimated by parallel measurements of CO at 0.14 Â 10 À5 g(H 2 ) m À2 h À1 . The mean inferred dry deposition velocity is 0.024 ± 0.013 cm s À1 with a seasonal amplitude of 40% at Gif-sur-Yvette.Citation: Yver, C., M. Schmidt, P. Bousquet, W. Zahorowski, and M. Ramonet (2009), Estimation of the molecular hydrogen soil uptake and traffic emissions at a suburban site near Paris through hydrogen, carbon monoxide, and radon-222 semicontinuous measurements,
Abstract. The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.