The genus Rumex includes hermaphroditic, polygamous, gynodioecious, monoecious, and dioecious species, with the dioecious species being represented by different sex-determining mechanisms and sex-chromosome systems. Therefore, this genus represents an exceptional case study to test several hypotheses concerning the evolution of both mating systems and the genetic control of sex determination in plants. Here, we compare nuclear intergenic transcribed spacers and chloroplast intergenic sequences of 31 species of Rumex. Our phylogenetic analysis supports a systematic classification of the genus, which differs from that currently accepted. In contrast to the current view, this new phylogeny suggests a common origin for all Eurasian and American dioecious species of Rumex, with gynodioecy as an intermediate state on the way to dioecy. Our results support the contention that sex determination based on the balance between the number of X chromosomes and the number of autosomes (X/A balance) has evolved secondarily from male-determining Y mechanisms and that multiple sex-chromosome systems, XX/XY1Y2, were derived twice from an XX/XY system. The resulting phylogeny is consistent with a classification of Rumex species according to their basic chromosome number, implying that the evolution of Rumex species might have followed a process of chromosomal reduction from x = 10 toward x = 7 through intermediate stages (x = 9 and x = 8).
One characteristic of sex chromosomes is the accumulation of a set of different types of repetitive DNA sequences in the Y chromosomes. However, little is known about how this occurs or about how the absence of recombination affects the subsequent evolutionary fate of the repetitive sequences in the Y chromosome. Here we compare the evolutionary pathways leading to the appearance of three different families of satellite-DNA sequences within the genomes of Rumex acetosa and R. papillaris, two dioecious plant species with a complex XX/XY(1)Y(2) sex-chromosome system. We have found that two of these families, one autosomic (the RAE730 family) and one Y-linked (the RAYSI family), arose independently from the ancestral duplication of the same 120-bp repeat unit. Conversely, a comparative analysis of the three satellite-DNA families reveals no evolutionary relationships between these two and the third, RAE180, also located in the Y chromosomes. However, we have demonstrated that, regardless of the mechanisms that gave rise to these families, satellite-DNA sequences have different evolutionary fates according to their location in different types of chromosomes. Specifically, those in the Y chromosomes have evolved at half the rate of those in the autosomes, our results supporting the hypothesis that satellite DNAs in nonrecombining Y chromosomes undergo lower rates of sequence evolution and homogenization than do satellite DNAs in autosomes.
The structural features and evolutionary state of the sex chromosomes of the XX/XY species of Rumex are unknown. Here, we report a study of the meiotic behaviour of the XY bivalent in Rumex acetosella and R. suffruticosus, a new species which we describe cytogenetically for the first time in this paper, and also that of the XY(1)Y(2) trivalent of R. acetosa by both conventional cytogenetic techniques and analysis of synaptonemal complex formation. Fluorescent in situ hybridization with satellite DNA and rDNA sequences as probes was used to analyse the degree of cytogenetic differentiation between the X and Y chromosomes in order to depict their evolutionary stage in the three species. Contrasting with the advanced state of genetic differentiation between the X and the Y chromosomes in R. acetosa, we have found that R. acetosella and R. suffruticosus represent an early stage of genetic differentiation between sex chromosomes. Our findings further demonstrate the usefulness of the genus Rumex as a model for analysing the evolution of sex chromosomes in plants, since within this genus it is now possible to study the different levels of genetic differentiation between the sex chromosomes and to analyse their evolutionary history from their origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.