The ultraviolet spectrum (1145-1720 Å) of the distant quasar Q 0302-003 (z = 3.286) was observed at 1.8 Å resolution with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. A total integration time of 23,280 s was obtained. The spectrum clearly delineates the Gunn-Peterson He II absorption trough, produced by He II Lyα along the line of sight over the redshift range z = 2.78 − 3.28. Its interpretation was facilitated by modeling
STIS white-light coronagraphic imaging has been carried out for 14 nearby, lightly reddened Herbig Ae stars, providing data on the environments and disks associated with these stars. No disks are detected in our data when the Herbig Ae star is accompanied by a stellar companion at r 2 00 . We find that the optical visibility of protoplanetary disks associated with Herbig Ae stars at r ! 50 70 AU from the star is correlated with the strength of the mid-IR PAH features, particularly 6.2 m. These features, like the FUV fluorescent H 2 emission, trace the presence of material sufficiently far above the disk midplane that it is directly illuminated by the star's FUV radiation. In contrast, measures of the bulk properties of the disk, including ongoing accretion activity, mass, and the submillimeter slope of the SED, do not correlate with the surface brightness of the optical nebulosity. Modelers have interpreted the appearance of the IR SED and the presence of emission from warm silicate grains at 10 m as a measure of geometrical shadowing by material in the disk near the dust sublimation radius of 0.5 AU. Geometrical shadowing sufficient to render a disk dark to distances as large as 500 AU from a star would require that the star be optically visible only if viewed essentially pole-on, in disagreement with our program star system inclinations. Rather than invoking shadowing to account for the optically dark disks, the correlation of the STIS detections with PAH emission features suggests a correlation with disk flaring and an anticorrelation with the degree of dust settling toward the midplane. If this correlation continues to lower levels, the STIS data suggest that improvements in coronagraph performance that suppress the residual scattered and diffracted stellar light by an additional factor of !10 should render the majority of disks associated with nearby Herbig Ae stars detectable.
We use ultraviolet spectra of Capella from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) satellites to study interstellar absorption lines from the Local Interstellar Cloud (LIC). Measurements of these lines are used to empirically determine the ionization states of carbon, nitrogen, and silicon in the LIC, for comparison with the predictions of theoretical photoionization models. We find that the observed ionization states are consistent with previously published photoionization predictions. Total abundances are determined for the elements mentioned above, and others, for comparison with solar abundances. Magnesium, aluminum, silicon, and iron are all depleted by at least a factor of 10 toward Capella. The abundances of carbon, nitrogen, and oxygen are essentially solar, although the error bars are large enough to also allow depletions of about a factor of 2 for these elements.
Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediatemass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with ∼10× more photoelectric absorption than expected from optical and FUV data. We consider three sources for the absorption: the disk, absorption in a wind or jet, and accretion. While we detect the disk in scattered light in a re-analysis of archival Hubble Space Telescope data, the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass-loss rate that is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's O vi emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high-temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.