Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
Abstract. We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved -cosmology, astrophysics, nuclear, and particle physics -in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
Galactic cosmic rays reach energies of at least a few Peta-electronvolts (1 PeV =1015 electron volts)1 . This implies our Galaxy contains PeV accelerators (PeVatrons), but all proposed models of Galactic cosmic-ray accelerators encounter non-trivial difficulties at exactly these energies 2 . Tens of Galactic accelerators capable of accelerating particle to tens of TeV (1 TeV =10 12 electron volts) energies were inferred from recent gamma-ray observations 3 . None of the currently known accelerators, however, not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays, have shown the characteristic tracers of PeV particles: power-law spectra of gamma rays extending without a cutoff or a spectral break to tens of TeV 4 . Here we report deep gamma-ray observations with arcminute angular resolution of the Galactic Centre regions, which show the expected tracer of the presence of PeV particles within the central 10 parsec of the Galaxy. We argue that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts 5 and an outflow from the Galactic Center 6 . Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10 6−7 years, and therefore should be considered as a viable alternative to supernova remnants as a source of PeV Galactic cosmic rays.The large photon statistics accumulated over the last 10 years of observations with the High Energy Stereoscopic System (H.E.S.S.), together with improvements in the methods of data analysis, allow for a deep study of the properties of the diffuse very-high-energy (VHE; more than 100 GeV) emission of the central molecular zone. This region surrounding the Galactic Centre contains predominantly molecular gas and extends (in projection) out to r∼250 pc at positive galactic longitudes and r∼150 pc at negative longitudes. The map of the central molecular zone as seen in VHE γ-rays (Fig. 1) shows a strong (although not linear; see below) correlation between the brightness distribution of VHE γ-rays and the locations of massive gas-rich complexes. This points towards a hadronic origin of the diffuse emission 7 , where the γ-rays result from the interactions of relativistic protons with the ambient gas. The second important mechanism of production of VHE γ-rays 3 is the inverse Compton scattering of electrons. However, the severe radiative losses suffered by multi-TeV electrons in the Galactic Centre region prevent them from propagating over scales comparable to the size of the central molecular zone, thus disfavouring a leptonic origin of the γ-rays (see discussion in Methods and Extended Data Figures 1 and 2). The location and the particle injection rate history of the cosmic-ray accelerator(s), responsible for the relativistic protons, determine the spatial distribution of these cosmic rays which...
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.