NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7 Be beams) in 2011.NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration.This paper describes the state of the NA61/SHINE facility -the beams and the detector system -before the CERN Long Shutdown I, which started in March 2013.
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20,31,40, 80 and 158 GeV/c ( √ s = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.
a b s t r a c tThe T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Published by Elsevier B.V.
Spectra of K 0S mesons and hyperons were measured in p + C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K 0 S and production in p + C interactions serve as a reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross N. ABGRALL et al. PHYSICAL REVIEW C 89, 025205 (2014) sections for K 0 S and are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K 0 S mean multiplicity in production processes n K 0 S and the inclusive cross section for K 0 S production σ K 0 S were measured and amount to 0.127 ± 0.005 (stat) ± 0.022 (sys) and 29.0 ± 1.6 (stat) ± 5.0 (sys) mb, respectively.
The Belgrade underground laboratory consists of two interconnected spaces, a ground level laboratory and a shallow underground one, at 25 meters of water equivalent. The laboratory hosts a low-background gamma spectroscopy system and cosmic-ray muon detectors. With the recently adopted digital data acquisition system it is possible to simultaneously study independent operations of the two detector systems, as well as processes induced by cosmic-ray muons in germanium spectrometers. Characteristics and potentials of the present experimental setup, together with some preliminary results for the flux of fast neutrons and stopped muons, are reported here
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.