Aims. To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared. Methods. Observations were obtained with the MIDI instrument at the Very Large Telescope Interferometer. The 21 visibility points recorded are dispersed with a spectral resolution of λ/δλ ≈ 30 in the wavelength range from 8 to 13 µm. To interpret the data we used a stepwise approach of modelling with increasing complexity. The final model consists of two black body Gaussian distributions with dust extinction. Results. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 µm in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk of L acc = 10 10 L , which corresponds to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Conclusions. Based on a great leap forward in the quality and quantity of interferometric data, our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or "clumpy".
Context. The AGN-heated dust distribution (the "torus") is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear super-massive black hole. Yet, even its most basic structural properties (such as its extent, geometry and elongation) are unknown for all but a few archetypal objects. Aims. In order to understand how the properties of AGN tori are related to feeding and obscuration, we need to resolve the matter distribution on parsec scales. Methods. Since most AGNs are unresolved in the mid-IR, even with the largest telescopes, we utilize the MID-infrared interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) that is sensitive to structures as small as a few milli-arcseconds (mas). We present here an extensive amount of new interferometric observations from the MIDI AGN Large Program (2009Program ( -2011 and add data from the archive to give a complete view of the existing MIDI observations of AGNs. Additionally, we have obtained high-quality mid-IR spectra from VLT/VISIR to provide a precise total flux reference for the interferometric data.Results. We present correlated and total fluxes for 23 AGNs (16 of which with new data) and derive flux and size estimates at 12 µm using simple axisymmetric geometrical models. Perhaps the most surprising result is the relatively high level of unresolved flux and its large scatter: The median "point source fraction" is 70% for type 1 and 47 % for type 2 AGNs meaning that a large part of the flux is concentrated on scales <5 mas (0.1-10 pc). Among sources observed with similar spatial resolution, it varies from 20%-100%. For 18 of the sources, two nuclear components can be distinguished in the radial fits. While these models provide good fits to all but the brightest sources, significant elongations are detected in eight sources. Conclusions. The half-light radii of the fainter sources are smaller than expected from the size ∝L 0.5 scaling of the bright sources and show a large scatter, especially when compared to the relatively tight size-luminosity relation in the near-infrared. It is likely that a common "size-luminosity" relation does not exist for AGN tori, but that they are dominated by intrinsic differences in their dust structures. Variations in the relative contribution of extended dust in the narrow line region or heated by star formation vs. compact AGN-heated dust and non-thermal emission also have to be taken into account.
Context. With infrared interferometry it is possible to resolve the nuclear dust distributions that are commonly associated with the dusty torus in active galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus and previous interferometric observations have shown that its nuclear dust emission is particularly well resolved. Aims. The aim of the present interferometric investigation is to better constrain the dust morphology in this active nucleus. Methods. To this end, extensive new observations were carried out with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer, leading to a total of 152 correlated flux spectra and differential phases between 8 and 13 μm. To interpret this data, we used a model consisting of black-body emitters with a Gaussian brightness distribution and with dust extinction.Results. The direct analysis of the data and the modelling confirm that the emission is distributed in two distinct components: a disklike emission component with a size (FWHM) of ∼0.2 × 1.1 pc and an extended component with a size of ∼0.8 × 1.9 pc. The disk-like component is elongated along PA ∼ 46• and oriented perpendicular to the ionisation cone and outflow. The extended component is responsible for 80% of the mid-infrared emission. It is elongated along PA ∼ 107• , which is roughly perpendicular to the disk component and thus in polar direction. It is interpreted as emission from the inner funnel of an extended dust distribution and shows a strong increase in the extinction towards the south-east. We find both emission components to be consistent with dust at T ∼ 300 K, that is we find no evidence of an increase in the temperature of the dust towards the centre. From this we infer that most of the near-infrared emission probably comes from parsec scales as well. We further argue that the disk component alone is not sufficient to provide the necessary obscuration and collimation of the ionising radiation and outflow. The material responsible for this must instead be located on scales of ∼1 pc, surrounding the disk. We associate this material with the dusty torus. Conclusions. The clear separation of the dust emission into a disk-like emitter and a polar elongated source will require an adaptation of our current understanding of the dust emission in AGN. The lack of any evidence of an increase in the dust temperature towards the centre poses a challenge for the picture of a centrally heated dust distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.