On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We report the WIMP dark matter search results using the first physics-run data of the PandaX-II 500 kg liquid xenon dual-phase time-projection chamber, operating at the China JinPing underground Laboratory. No dark matter candidate is identified above background. In combination with the data set during the commissioning run, with a total exposure of 3.3×10 4 kg-day, the most stringent limit to the spin-independent interaction between the ordinary and WIMP dark matter is set for a range of dark matter mass between 5 and 1000 GeV/c 2 . The best upper limit on the scattering cross section is found 2.5 × 10 −46 cm 2 for the WIMP mass 40 GeV/c 2 at 90% confidence level.Weakly interacting massive particles, WIMPs in short, are a class of hypothetical particles that came into existence shortly after the Big Bang. The WIMPs could naturally explain the astronomical and cosmological evidences of dark matter in the Universe. The weak interactions between WIMPs and ordinary matter could lead to the recoils of atomic nuclei that produce detectable signals in deep-underground direct detection experiments. Over the past decade, the dual-phase xenon time-projection chambers (TPC) emerged as a powerful technology for WIMP searches both in scaling up the target mass, as well as in improving background rejection [1][2][3]. LUX, a dark matter search experiment with a 250 kg liquid xenon target, has recently reported the best limit of 6×10 −46 cm 2 on the WIMP-nucleon scattering cross section [4] The PandaX-II experiment, a half-ton scale dual-phase xenon experiment at the China JinPing underground Laboratory (CJPL), has recently reported the dark matter search results from its commissioning run (Run 8,19.1 live days) with a 5845 kg-day exposure [5]. The data were contaminated with significant 85 Kr background. After a krypton distillation campaign in early 2016, PandaX-II commenced physics data taking in March 2016. In this paper, we report the combined WIMP search results using the data from the first physics run from March 9 to June 30, 2016 (Run 9, 79.6 live days) and Run 8, with a total of 3.3×10 4 kg-day exposure, the largest reported WIMP data set among dual-phase xenon detectors in the world to date.The PandaX-II detector has been described in detail in Ref. [5]. The liquid xenon target consists of a cylindrical TPC with dodecagonal cross section (opposite-side distance 646 mm), confined by the polytetrafluoroethylene (PTFE) reflective wall, and a vertical drift distance of 600 mm defined by the cathode mesh and gate grid located at the bottom and top. For each physical event, the prompt scintillation photons (S1) and the delayed electroluminescence photons (S2) from the ionized electrons are collected by two arrays of 55 Hamamatsu R11410-arXiv:1607.07400v3 [hep-ex] Hamamatsu R8520-406 1-inch PMTs serving as an active veto. The γ background, which produces electron recoil (ER) events, can be distinguished from the dark matter nuclear recoil (NR) using the S2-to-S1 ratio. During the data taking period in Run 9, a few diffe...
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.
The Dark Energy Camera is a new imager with a 2°. 2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaborationand meets or exceeds the stringent requirements designed for the widefield and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0 263 pixel −1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electronreadout noise. This paper provides a technical description of the cameraʼs engineering, construction, installation, and current status.
We search for excess γ-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted γ-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each 2σ local) for γ-ray emission in excess of the background. However, the ensemble of derived γ-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance ). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of ∼2 for large DM masses ( and ) and weakening by a factor of ∼1.5 at lower masses relative to previously observed limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.