The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (~1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chrétien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide subarcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.
ABSTRACT. The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hr photometric precision of 80 ppm (both at V ¼ 12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75 days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers prelaunch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.
New transiting planet candidates are identified in 16 months (2009 May-2010 of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T 0 , and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R P /R ), reduced semimajor axis (d/R ), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R ⊕ compared to 53% for candidates larger than 2 R ⊕ ) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression 1The Astrophysical Journal Supplement Series, 204:24 (21pp), 2013 February Batalha et al. toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.
We report on the orbital architectures of Kepler systems having multiple planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic massradius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼ 96% of the candidate planetary systems are correctly interpreted as true systems. We find that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near firstorder resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.0• -2.2• , for the packed systems of small planets probed by these observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.