On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He i λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 E(10 51 erg) 6.9 and ejecta masses of 2.3 M ej (M ) 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx-the best sampled SL-SNe Ic so far-points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.
The high luminosity and slow decline of their light curves ( Fig PTF12dam is not detected in z P1 images on 1 January 2012, 132 days before the peak.Although their light curves match the declining phases of SN 2007bi and the PISN models quite well, PTF12dam and PS1-11ap rise to maximum light a factor of ~2 faster than these models.The spectra of PTF12dam and PS1-11ap show them to be similar supernovae. After 50 days from the respective light curve peaks, these spectra are almost identical to that of SN 2007bi at the same epoch ( Particularly around and after maximum light, PISN colours are expected to evolve to the red owing to increasing blanketing by iron group elements 7,8 abundant in their ejecta. We see no evidence of line blanketing in our spectra, even down to 2,000 Å (rest frame) in PS1-11ap, which suggests lower iron group abundances and a higher degree of ionization than in PISN models. Such conditions are fulfilled in models of ejecta reheated by magnetars-highly magnetic, rapidly rotating nascent pulsars 13,16,17 . The pressure of the magnetar wind on the inner ejecta can form a dense shell 13,14,17 at near-constant photospheric velocity. ForPTF12dam, the velocities of spectral lines are close to 10,000 km s −1 at all times. Intriguingly, Page 4 of 26 the early spectra of our objects are very similar to those of superluminous supernovae of type I (refs 2, 11, 12) and evolve in the same way, but on longer timescales and with lower line velocities (Fig. 2).Nebular modelling of SN 2007bi spectra has been used to argue 1 for large ejected oxygen and magnesium masses of 8-15M ! and 0.07-0.13M ! , respectively (where M ! is the solar mass). Such masses are actually closer to values in massive core-collapse models 18 than in PISN models, which eject ~40M ! oxygen and ~4M ! magnesium 1,8,9 . In the work reported in ref.1, an additional 37M ! in total of Ne, Si, S, and Ar were added to the model, providing a total ejecta mass consistent with a PISN. However, this was not directly measured 1 , because these elements lack any identified lines. These constraints are important, so we investigated line formation in this phase using our own non-local thermodynamic equilibrium code We suggest here one model that can consistently explain the data. A magnetarpowered supernova can produce a light curve with the observed rise and decline rates as the neutron star spins down and reheats the ejecta 13,14,16,17 . It has been suggested that ~10% of core-collapses may form magnetars 14 . Although their initial-spin distribution is unknown, periods ≳1 ms are physically plausible. This mechanism has already been proposed for SN (Fig. 4), and found a good fit for magnetic field B ≈ 10 14 G and spin period P ≈ 2.6 ms, with an ejecta mass of ~10-16M ! . At peak, the r-band luminosities of PTF12dam and PS1-11ap are ~1.5 times that of SN 2007bi. Scaling our light curve by this factor, our model implies a similar ejected mass for SN 2007bi, with a slower-spinning magnetar (P ≈ 3.3 ms), comparable to previous models 14 . If the mag...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.