Megakaryocytopoiesis is the cellular developmental process that leads to platelet production. At least two humoral growth factors may be necessary for megakaryocyte proliferation and maturation. One is a megakaryocyte-colony stimulating factor (MK-CSF) which induces the proliferation and differentiation of megakaryocyte progenitors, and the second, thrombopoietin, is a megakaryocyte maturation factor. Neither of these factors has been fully characterized. The proto-oncogene c-mpl, an orphan member of the haematopoietin receptor family, is specifically involved in megakaryocyte regulation. Here we present evidence that the c-mpl-encoded receptor binds a ligand (c-Mpl ligand) which is a humoral factor implicated in platelet homeostasis. Our results suggest that c-Mpl ligand, thrombopoietin and MK-CSF might be the same molecule.
Insertional mutagenesis of the spi-1 gene is associated with the emergence of malignant proerythroblasts during Friend virus-induced acute erythroleukemia. To determine the role of spi-1/PU.1 in the genesis of leukemia, we generated spi-1 transgenic mice. In one founder line the transgene was overexpressed as an unexpected-size transcript in various mouse tissues. Homozygous transgenic animals gave rise to live-born offspring, but 50% of the animals developed a multistep erythroleukemia within 1.5 to 6 months of birth whereas the remainder survived without evidence of disease. At the onset of the disease, mice became severely anemic. Their hematopoietic tissues were massively invaded with nontumorigenic proerythroblasts that express a high level of Spi-1 protein. These transgenic proerythroblasts are partially blocked in differentiation and strictly dependent on erythropoietin for their proliferation both in vivo and in vitro. A complete but transient regression of the disease was observed after erythrocyte transfusion, suggesting that the constitutive expression of spi-1 is related to the block of the differentiation of erythroid precursors. At relapse, erythropoietin-independent malignant proerythroblasts arose. Growth factor autonomy could be partially explained by the autocrine secretion of erythropoietin; however, other genetic events appear to be necessary to confer the full malignant phenotype. These results reveal that overexpression of spi-1 is essential for malignant erythropoiesis and does not alter other hematopoietic lineages.
The Mpl receptor (Mpl-R) is a cytokine receptor belonging to the hematopoietin receptor superfamily for which a ligand has been recently characterized. To study the lineage distribution of Mpl-R in normal hematopoietic cells, we developed a monoclonal antibody (designated M1 MoAb) by immunizing mice with a soluble form of the human Mpl-R protein. With few exceptions, Mpl-R was detected by indirect immunofluorescent analysis on all human leukemic hematopoietic cell lines with pluripotential and megakaryocytic phenotypes, but not on other cell lines. By immunoprecipitation and immunoblotting, M1 MoAb recognized a band at 82 to 84 kD corresponding to the expected size of the glycosylated receptor. Among normal hematopoietic cells, M1 MoAb strongly stained megakaryocytes (MK) and Mpl-R was detected on platelets by indirect immunofluorescence staining or immunoblotting. On purified CD34+ cells, less than 2% of the population was stained, but the labeling was weak and just above the threshold of detection. However, dual-labeling with the M1 and antiplatelet glycoprotein MoAbs showed that most Mpl-R+/CD34+ cells coexpressed CD41a, CD61, or CD42a, suggesting that cell surface appearance of Mpl-R and platelet glycoproteins could be coordinated. M1-positive and M1-negative subsets were sorted from purified CD34+ cell populations. Colony assays showed that the absolute number of hematopoietic progenitors was extremely low and no primitive progenitors were present in the CD34+/Mpl-R+ fraction. However, this cell fraction was significantly enriched in low proliferative colony-forming units-MK. When the CD34+/Mpl-R+ fraction was grown in liquid culture containing human aplastic serum and a combination of growth factors, mature MK were seen as early as day 4, whereas the predominant cell population was erythroblasts on day 8. Similar data were also obtained with the CD34+/Mpl-R- fraction with, however, a delay in the time of appearance of both MK and erythroblasts. In conclusion, Mpl-R is a cytokine receptor restricted to the MK cell lineage. Its expression is low on CD34+ cells and these cells mainly correspond to late MK progenitors and transitional cells. These data indicate that the action of the Mpl-R ligand might predominate during the late stages of human MK differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.