The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2>0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.
To identify novel risk variants for chronic lymphocytic leukemia (CLL) we conducted a genome-wide association study of 299,983 tagging SNPs, with validation in four additional series totaling 2,503 cases and 5,789 controls. We identified four risk loci for CLL at 2q37.3 (rs757978, FARP2; odds ratio [OR] = 1.39; P = 2.11 x 10-9), 8q24.21 (rs2456449; OR = 1.26; P = 7.84 x 10-10), 15q21.3 (rs7169431; OR = 1.36; P = 4.74 x 10-7) and 16q24.1 (rs305061; OR = 1.22; P = 3.60 x 10-7). There was also evidence for risk loci at 15q25.2 (rs783540, CPEB1; OR = 1.18; P = 3.67 x 10-6) and 18q21.1 (rs1036935; OR = 1.22; P = 2.28 x 10-6). These data provide further evidence for genetic susceptibility to this B-cell hematological malignancy.
We screened index cases from 410 Spanish breast/ovarian cancer families and 214 patients (19 of them males) with breast cancer for germ-line mutations in the BRCA1 and BRCA2 genes, using SSCP, PTT, CSGE, DGGE, and direct sequencing. We identified 60 mutations in BRCA1 and 53 in BRCA2. Of the 53 distinct mutations observed, 11 are novel and 12 have been reported only in Spanish families (41.5%). The prevalence of mutations in this set of families was 26.3%, but the percentage was higher in the families with breast and ovarian cancer (52.1%). The lowest proportion of mutations was found in the site-specific female breast cancer families (15.4%). Of the families with male breast cancer cases, 59.1% presented mutations in the BRCA2 gene. We found a higher frequency of ovarian cancer associated with mutations localized in the 5' end of the BRCA1 gene, but there was no association between the prevalence of this type of cancer and mutations situated in the ovarian cancer cluster region (OCCR) region of exon 11 of the BRCA2 gene. The mutations 187_188delAG, 330A>G, 5236G>A, 5242C>A, and 589_590del (numbered after GenBank U14680) account for 46.6% of BRCA1 detected mutations whereas 3036_3039del, 6857_6858del, 9254_9258del, and 9538_9539del (numbered after GenBank U43746) account for 56.6% of the BRCA2 mutations. The BRCA1 330A>G has a Galician origin (northwest Spain), and BRCA2 6857_6858del and 9254_9258del probably originated in Catalonia (northeast Spain). Knowledge of the spectrum of mutations and their geographical distribution in Spain will allow a more effective detection strategy in countries with large Spanish populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.