ObjectiveTo accurately categorize the phenotypes of individuals with collagen VI–related dystrophies (COL6-RDs) during the first years of life to predict long-term motor function and pulmonary function, to provide phenotype-specific anticipatory care, and to improve clinical trial readiness.MethodsThis retrospective, multicenter, international study analyzed the relationship of long-term motor and pulmonary function with the initial maximal motor ability achieved in individuals with COL6-RD.ResultsWe studied 119 patients with COL6-RD from Spain (n = 54) and the United States (n = 65). The early maximal motor milestones of ability to rise from the floor unassisted and ability to climb 4 steps without holding onto a railing demonstrated reliability in distinguishing between 3 COL6-RD phenotypic subgroups: (1) Ullrich congenital muscular dystrophy, (2) intermediate COL6-RD, and (3) Bethlem myopathy. Long-term motor function and pulmonary function are strongly correlated with the maximal motor ability achieved during the first years of life. Maximal motor capacity can predict other disease-relevant events such as the age at loss of ambulation and the need for the initiation of nocturnal noninvasive ventilation.ConclusionThis work proposes a prospective phenotypic classification for COL6-RDs that will enable an accurate prediction of a patient's COL6-RD phenotype during the first years of life. The ability to establish a patient's COL6-RD phenotypic classification early will enable a more accurate prognosis of future motor and pulmonary function, thus improving anticipatory clinical care, and it will be instrumental in aiding the design of future clinical trials by allowing early stratification of trial cohorts.
Mutations in human collagen VI genes cause a spectrum of musculoskeletal conditions in children and adults collectively termed collagen VI-related myopathies (COL6-RM) characterized by a varying degree of muscle weakness and joint contractures and which include Ullrich Congenital Muscular Dystrophy (UCMD) and Bethlem Myopathy (BM). Given that collagen VI is one of the most abundant extracellular matrix proteins in adipose tissue and its emerging role in energy metabolism we hypothesized that collagen VI deficiency might be associated with alterations in adipose tissue distribution and adipokines serum profile. We analyzed body composition by means of dual-energy X-ray absorptiometry in 30 pediatric and adult COL6-RM myopathy patients representing a range of severities (UCMD, intermediate-COL6-RM, and BM). We found a distinctive pattern of regional adipose tissue accumulation which was more evident in children at the most severe end of the spectrum. In particular, the accumulation of fat in the android region was a distinguishing feature of UCMD patients. In parallel, there was a decrease in lean mass compatible with a state of sarcopenia, particularly in ambulant children with an intermediate phenotype. All children and adult patients that were sarcopenic were also obese. These changes were significantly more pronounced in children with collagen VI deficiency than in children with Duchenne Muscular Dystrophy of the same ambulatory status. High molecular weight adiponectin and leptin were significantly increased in sera from children in the intermediate and BM group. Correlation analysis showed that the parameters of fat mass were negatively associated with motor function according to several validated outcome measures. In contrast, lean mass parameters correlated positively with physical performance and quality of life. Leptin and adiponectin circulating levels correlated positively with fat mass parameters and negatively with lean mass and thus may be relevant to the disease pathogenesis and as circulating markers. Taken together our results indicate that COL6-RM are characterized by specific changes in total fat mass and distribution which associate with disease severity, motor function, and quality of life and which are clinically meaningful and thus should be taken into consideration in the management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.