As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the
We present the X-ray timing results of the new black hole candidate (BHC) MAXI J1535-571 during its 2017 outburst from Hard X-ray Modulation Telescope (Insight -HXMT) observations taken from 2017 September 6 to 23. Following the definitions given by Belloni (2010), we find that the source exhibits state transitions from Low/Hard state (LHS) to Hard Intermediate state (HIMS) and eventually to Soft Intermediate state (SIMS). Quasi-periodic oscillations (QPOs) are found in the intermediate states, which suggest different types of QPOs. With the large effective area of Insight -HXMT at high energies, we are able to present the energy dependence of the QPO amplitude and centroid frequency up to 100 keV which is rarely explored by previous satellites. We also find that the phase lag at the type-C QPOs centroid frequency is negative (soft lags) and strongly correlated with the centroid frequency. By assuming a geometrical origin of type-C QPOs, the source is consistent with being a high inclination system.
We report on analysis of observations of the bright transient X-ray pulsar Swift J0243.6+6124 obtained during its 2017-2018 giant outburst with Insight-HXMT, NuSTAR, and Swift observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields.
The Medium Energy X-ray telescope (ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope (Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 keV with a total geometrical area of 952 cm 2 . The application specific integrated circuit (ASIC) chip, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views (FOVs) for the telescope, 1°×4°, 4°×4°, and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components. The energy resolution of ME is~3 keV at 17.8 keV (FWHM) and the time resolution is 255 μs. In this paper, we introduce the design and performance of ME.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.