Manganese substituted sodium cobaltate, Na(2/3)Co(2/3)Mn(1/3)O(2), with a layered hexagonal structure (P2-type) was obtained by a co-precipitation method followed by a heat treatment at 950 °C. Powder X-ray diffraction analysis revealed that the phase is pure in the absence of long-range ordering of Co and Mn ions in the slab or Na(+) and vacancy in the interslab space. The oxidation states of the transition metal ions were studied by magnetic susceptibility measurements, electron paramagnetic resonance (ESR) and (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The charge compensation is achieved by the stabilization of low-spin Co(3+) and Mn(4+) ions. The capability of Na(2/3)Co(2/3)Mn(1/3)O(2) to intercalate and deintercalate Na(+) reversibly was tested in electrochemical sodium cells. It appears that the P2 structure is maintained during cycling, the cell parameter evolution versus the sodium amount is given. From the features of the cycling curve the formation of an ordered phase for the Na(0.5)Co(2/3)Mn(1/3)O(2) composition is expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.