The present paper reports on the recent development of several oversized millimeter wave transmission line components for different applications. The studies include a circular TE 11 -to-Gaussian beam mode converting horn, a TM 01 -to-rotating TE 31 mode converter, a TE 11 -mode 90°bend, a series of different HE 11 -mode transmission line components, a notch filter and a fast laser controlled semiconductor microwave switch.
RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during a pulse length of 1000 s. For different heating scenarios at 1.5 and 3.0 T, a wide band of operating frequencies (20–92 MHz) is required. To meet this requirement two CW 1.5 MW rf generators are being developed in-house. A pressurized as well as vacuum transmission line and launcher for the SST-1–ICRF system has been commissioned and tested successfully. A gyrotron for the 82.6 GHz ECRF system has been tested for a 200 kW/1000 s operation on a water dummy load with 17% duty cycle. High power tests of the transmission line have been carried out and the burn pattern at the exit of transmission line shows a gaussian nature. Launchers used to focus and steer the microwave beam in plasma volume are characterized by a low power microwave source and tested for UHV compatibility. Long pulse operation has been made feasible by actively cooling both the systems. In this paper detailed test results and the present status of both the systems are reported.
Two ways to improve efficiency of components based on Talbot effect are considered in the present paper. One way is based on optimization of waveguide wall impedance, another one consists in modification of waveguide cross-section shape. Both methods allow correction of waveguide modes spectrum and lead to efficiency enhancement. For the important application of Talbot effect-remote steering antenna of a wavebeam in plasma-the steering band is expanded by 40-50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.