Following previous work on an inherently mass‐conserving semi‐implicit (SI) semi‐Lagrangian (SL) discretization of the two‐dimensional (2D) shallow‐water equations and 2D vertical slice equations, that approach is here extended to the 3D deep‐atmosphere, non‐hydrostatic global equations. As with the reduced‐dimension versions of this model, an advantage of the approach is that it preserves the same basic structure as a standard, non‐mass‐conserving, SISL version of the model. Additionally, the model is simply switchable to hydrostatic and/or shallow‐atmosphere forms. It is also designed to allow simple switching between various geometries (Cartesian, spherical, spheroidal). The resulting mass‐conserving model is applied to a standard set of test problems for such models in spherical geometry and compared with results from the standard SISL version of the model.
We document the development of the first version of the U.K. Earth System Model UKESM1.The model represents a major advance on its predecessor HadGEM2-ES, with enhancements to all component models and new feedback mechanisms. These include a new core physical model with a well-resolved stratosphere; terrestrial biogeochemistry with coupled carbon and nitrogen cycles and enhanced land management; tropospheric-stratospheric chemistry allowing the holistic simulation of radiative forcing from ozone, methane, and nitrous oxide; two-moment, five-species, modal aerosol; and ocean biogeochemistry with two-way coupling to the carbon cycle and atmospheric aerosols. The complexity of coupling between the ocean, land, and atmosphere physical climate and biogeochemical cycles in UKESM1 is unprecedented for an Earth system model. We describe in detail the process by which the coupled model was developed and tuned to achieve acceptable performance in key physical and Earth system quantities and discuss the challenges involved in mitigating biases in a model with complex connections between its components. Overall, the model performs well, with a stable pre-industrial state and good agreement with observations in the latter period of its historical simulations. However, global mean surface temperature exhibits stronger-than-observed cooling from 1950 to 1970, followed by rapid warming from 1980 to 2014. Metrics from idealized simulations show a high climate sensitivity relative to previous generations of models: Equilibrium climate sensitivity is 5.4 K, transient climate response ranges from 2.68 to 2.85 K, and transient climate response to cumulative emissions is 2.49 to 2.66 K TtC −1 . Plain Language SummaryWe describe the development and behavior of UKESM1, a novel climate model that includes improved representations of processes in the atmosphere, ocean, and on land. These processes are inter-related: For example, dust is produced on the land and blown up into the atmosphere where it affects the amount of sunlight falling on Earth. Dust can also be dissolved in the ocean, where it affects marine life. This in turn changes both the amount of carbon dioxide absorbed by the ocean and the material emitted from the surface into the atmosphere, which has an affect on the formation of clouds. UKESM1 includes many processes and interactions such as these, giving it a high level of complexity. Ensuring realistic process behavior is a major challenge in the development of our model, and we have carefully tested this. UKESM1 performs well, correctly exhibiting stable results from a continuous pre-industrial simulation (used to provide a reference for future experiments) and showing good agreement
Abstract. The scientific understanding of the Earth's climate system, including the central question of how the climate system is likely to respond to human-induced perturbations, is comprehensively captured in GCMs and Earth System Models (ESM). Diagnosing the simulated climate response, and comparing responses across different models, is crucially dependent on transparent assumptions of how the GCM/ESM has been driven -especially because the implementation can involve subjective decisions and may differ between modelling groups performing the same experiment. This paper outlines the climate forcings and setup ofCorrespondence to: C. D. Jones (chris.d.jones@metoffice.gov.uk) the Met Office Hadley Centre ESM, HadGEM2-ES for the CMIP5 set of centennial experiments. We document the prescribed greenhouse gas concentrations, aerosol precursors, stratospheric and tropospheric ozone assumptions, as well as implementation of land-use change and natural forcings for the HadGEM2-ES historical and future experiments following the Representative Concentration Pathways. In addition, we provide details of how HadGEM2-ES ensemble members were initialised from the control run and how the palaeoclimate and AMIP experiments, as well as the "emissiondriven" RCP experiments were performed.
Abstract. We describe Global Atmosphere 7.0 and Global Land 7.0 (GA7.0/GL7.0), the latest science configurations of the Met Office Unified Model (UM) and the Joint UK Land Environment Simulator (JULES) land surface model developed for use across weather and climate timescales. GA7.0 and GL7.0 include incremental developments and targeted improvements that, between them, address four critical errors identified in previous configurations: excessive precipitation biases over India, warm and moist biases in the tropical tropopause layer (TTL), a source of energy non-conservation in the advection scheme and excessive surface radiation biases over the Southern Ocean. They also include two new parametrisations, namely the UK Chemistry and Aerosol (UKCA) GLOMAP-mode (Global Model of Aerosol Processes) aerosol scheme and the JULES multi-layer snow scheme, which improve the fidelity of the simulation and were required for inclusion in the Global Atmosphere/Global Land configurations ahead of the 6th Coupled Model Intercomparison Project (CMIP6). In addition, we describe the GA7.1 branch configuration, which reduces an overly negative anthropogenic aerosol effective radiative forcing (ERF) in GA7.0 whilst maintaining the quality of simulations of the present-day climate. GA7.1/GL7.0 will form the physical atmosphere/land component in the HadGEM3–GC3.1 and UKESM1 climate model submissions to the CMIP6.
The scientific understanding of the Earth's climate system, including the central question of how the climate system is likely to respond to human-induced perturbations, is comprehensively captured in GCMs and Earth System Models(ESM). Diagnosing the simulated climate response, and comparing responses across different models, is crucially dependent on transparent assumptions of how the GCM/ESM has been driven – especially because the implementation can involve subjective decisions and may differ between modelling groups performing the same experiment. This paper outlines the climate forcings and setup of the Met Office Hadley Centre ESM, HadGEM2-ES for the CMIP5 set of centennial experiments. We document the prescribed greenhouse gas concentrations, aerosol precursors, stratospheric and tropospheric ozone assumptions, as well as implementation of land-use change and natural forcings for the HadGEM2-ES historical and future experiments following the Representative Concentration Pathways. In addition, we provide details of how HadGEM2-ES ensemble members were initialised from the control run and how the palaeoclimate and AMIP experiments, as well as the "emission-driven" RCP experiments were performed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.