The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains ϳ16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some "giant" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.
This is the first study directly demonstrating hypoxia in advanced human atherosclerosis and its correlation with the presence of macrophages and the expression of HIF and VEGF. Also, the HIF pathway was associated with lesion progression and angiogenesis, suggesting its involvement in the response to hypoxia and the regulation of human intraplaque angiogenesis.
Optimal development of fertilized eggs into preimplantation embryos is essential for reproduction. Although mammalian oocytes ovulated after luteinizing hormone (LH) stimulation can be fertilized and promoted into early embryos in vitro, little is known about ovarian factors important for the conditioning of eggs for early embryo development. Because LH interacts only with ovarian somatic cells, its potential regulation of oocyte functions is presumably mediated by local paracrine factors. We performed DNA microarray analyses of ovarian transcripts and identified brainderived neurotrophic factor (BDNF) secreted by granulosa and cumulus cells as an ovarian factor stimulated by the preovulatory LH surge. Ovarian BDNF acts on TrkB receptors expressed exclusively in oocytes to enhance first polar body extrusion of oocytes and to promote the in vitro development of zygotes into preimplantation embryos. Furthermore, in vivo treatment with a Trk receptor inhibitor suppressed first polar body extrusion and the progression of zygotes into blastocysts. Thus, ovarian BDNF is important to nuclear and cytoplasmic maturation of the oocyte, which is essential for successful oocyte development into preimplantation embryos. Treatment with BDNF could condition the cultured oocytes for optimal progression into the totipotent blastocysts.early embryo development ͉ gonadotropins ͉ ovulation I n vertebrates, rupture of ovarian follicles and final maturation of oocytes occur in response to stimulation by pituitaryderived luteinizing hormones (LH) that act on the somatic granulosa and theca cells surrounding the oocyte. Shortly after stimulation by the preovulatory surge of LH, oocytes arrested at the late prophase resume meiosis characterized by germinal vesicle (nuclear envelope) breakdown (GVBD), chromosome condensation, and extrusion of the first polar body in preparation for fertilization and early embryonic development. Recent studies demonstrated that the endocrine hormone LH stimulates ovarian production of EGF-like factors from granulosa cells and insulin-like 3 from theca cells to promote GVBD (1, 2). In addition to nuclear maturation exemplified by GVBD and extrusion of the first polar body to complete the first meiotic division, oocytes also undergo cytoplasmic maturation characterized by cytoplasmic changes essential for monospermic fertilization, processing of the sperm, and preparation for development to preimplantation embryos (3, 4). Although the spermatozoon provides an essential element for embryo generation, the developmental fate of the embryo is principally dictated by the oocyte. However, few studies have explored ovarian factors that may be important for the conditioning of the oocyte in preparation for fertilization and preimplantation development.Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins known to activate the highaffinity TrkB receptor and the pan-neurotrophin low-affinity receptor p75 (5). Although neurotrophins are widely expressed in the central nervous syst...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.