Synthetic esters have become more and more popular in last few decades, explaining the increasing number of units filled with this liquid year by year. They have been investigated under different aspects, both from the fundamental point of view and breakdown mechanisms, well as from the application point of view. However, their use in high voltage equipment is always a challenge and deeper knowledge of the various aspects that can be encountered in their exploitation is needed. The intent of this review paper is to present the recent research progress on synthetic ester liquid in relation to the selected issues, most important for ester development in the authors’ opinion. The described issues are the breakdown performance of synthetic esters, lightning impulse strength and pre-breakdown phenomena of synthetic esters, synthetic esters-based nanofluids, combined paper-synthetic ester based insulating systems, application of synthetic ester for retro-filling and drying of mineral oil-immersed transformers, DGA(dissolved gas analysis)-based diagnosis of synthetic esters filled transformers as well as static electrification of synthetic esters. The different sections are based both on the data available in the literature, but above all on the authors’ own experience from their research work on synthetic ester liquids for electrical application purposes.
No abstract
The urge to develop high-speed data transfer technologies for futuristic electronic and communication devices has led to more incidents of serious electromagnetic interference and pollution. Over the past decade, there has been burgeoning research interests to design and fabricate high-performance porous EM shields to tackle this undesired phenomenon. Polymer nanocomposite foams and aerogels offer robust, flexible and lightweight architectures with tunable microwave absorption properties and are foreseen as potential candidates to mitigate electromagnetic pollution. This review covers various strategies adopted to fabricate 3D porous nanocomposites using conductive nanoinclusions with suitable polymer matrices, such as elastomers, thermoplastics, bioplastics, conducting polymers, polyurethanes, polyimides and nanocellulose. Special emphasis has been placed on novel 2D materials such as MXenes, that are envisaged to be the future of microwave-absorbing materials for next-generation electronic devices. Strategies to achieve an ultra-low percolation threshold using environmentally benign and facile processing techniques have been discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.