We report initial experience with novel three-dimensional (3D) image fusion software for guidance of transcatheter interventions in congenital heart disease. Developments in fusion imaging have facilitated the integration of 3D roadmaps from computed tomography or magnetic resonance imaging datasets. The latest software allows live fusion of two-dimensional (2D) fluoroscopy with pre-registered 3D roadmaps. We reviewed all cardiac catheterizations guided with this software (Philips VesselNavigator). Pre-catheterization imaging and catheterization data were collected focusing on fusion of 3D roadmap, intervention guidance, contrast and radiation exposure. From 09/2015 until 06/2016, VesselNavigator was applied in 34 patients for guidance (n = 28) or planning (n = 6) of cardiac catheterization. In all 28 patients successful 2D-3D registration was performed. Bony structures combined with the cardiovascular silhouette were used for fusion in 26 patients (93%), calcifications in 9 (32%), previously implanted devices in 8 (29%) and low-volume contrast injection in 7 patients (25%). Accurate initial 3D roadmap alignment was achieved in 25 patients (89%). Six patients (22%) required realignment during the procedure due to distortion of the anatomy after introduction of stiff equipment. Overall, VesselNavigator was applied successfully in 27 patients (96%) without any complications related to 3D image overlay. VesselNavigator was useful in guidance of nearly all of cardiac catheterizations. The combination of anatomical markers and low-volume contrast injections allowed reliable 2D-3D registration in the vast majority of patients.
IntroductionThree-dimensional rotational angiography (3DRA) has been used in the guidance of various transcatheter therapies including percutaneous pulmonary valve implantation (PPVI). The most recently available 3D image fusion software (VesselNavigator, Philips) extends this technology to use pre-registered computed tomography or magnetic resonance imaging datasets, promising reductions in contrast and radiation exposure along with shorter procedural times.MethodsIn this retrospective review, patients were assigned to three groups according to the mode of imaging guidance: two-dimensional angiography (2DA), 3DRA and VesselNavigator (VN) assisted valve implantation. Patient characteristics and catheterisation data were reviewed with a focus on contrast and radiation exposure, fluoroscopy, and procedural times.ResultsBetween July 2012 and June 2016, 21 patients underwent PPVI: 8 with 2D guidance, 6 patients with 3DRA and most recently 7 patients with VN assistance. Patents in the VN group received significantly less absolute and weight indexed contrast when compared with those with 2DA or 3DRA guided PPVI. Patients in the 2DA group received a significantly higher total dose area product radiation dose and air kerma in comparison with patients with 3DRA and VN guided intervention. Application of VN resulted in the shortest fluoroscopy time, although not statistically significant, and a significantly shorter study time when compared with 2DA.ConclusionsUtilisation of pre-intervention image manipulation with VesselNavigator for 3D guidance of PPVI results in a reduction in contrast and radiation exposure and study time as compared with traditional 2D guidance, and contrast usage as compared with 3DRA.
Objective Arterial stiffening is an early marker of atherosclerosis that has a prognostic value for cardiovascular morbidity and mortality. Although many markers of arterial hardening have been proposed, the search is on for newer, more user-friendly and reliable surrogates. One such potential candidate has emerged from cardiology, the speckle-tracking technique. The aim of this study was to evaluate the feasibility of the two-dimensional speckle tracking for the evaluation of arterial wall stiffness in comparison with standard stiffness parameters. Methods Carotid ultrasound and applanation tonometry were performed in 188 patients with no cardiovascular risk factors. The following parameters were then evaluated: the intima-media complex thickness, distensibility coefficient, β-stiffness index, circumferential strain/strain rate, and pulse wave velocity and augmentation index. These variables were compared with each other and with patient age, and their reliability was assessed with Bland-Altman plots. Results Strain parameters derived from two-dimensional speckle tracking and intima-media complex thickness correlated better with age and pulse wave velocity than standard makers of arterial stiffness. Moreover, the reliability of these measurements was significantly higher than conventional surrogates. Conclusions Two-dimensional speckle tracing is a reliable method for the evaluation of arterial stiffness. Therefore, together with intima-media complex thickness measurement, it offers great potential in clinical practice as an early marker of atherosclerosis.
IntroductionUntil recently, two-dimensional (2D) angiography was the mainstay of guidance for percutaneous pulmonary valve implantation (PPVI). Recent advances in fusion software have enabled direct fusion of pre-intervention imaging, magnetic resonance imaging (MRI) or computed tomography (CT) scans, to create a reliable three-dimensional (3D) roadmap for procedural guidance.AimTo report initial two-center experience with direct 2D–3D image fusion for live guidance of PPVI with MRI- and CT-derived 3D roadmaps.Material and methodsWe performed a prospective study on PPVIs guided with the new fusion imaging platform introduced in the last quarter of 2015.Results3D guidance with an MRI- (n = 14) or CT- (n = 8) derived roadmap was utilized during 22 catheterizations for right ventricular outflow tract balloon sizing (n = 7) or PPVI (n = 15). Successful 2D–3D registration was performed in all but 1 patient. Six (27%) patients required intra-procedural readjustment of the 3D roadmap due to distortion of the anatomy after introduction of a stiff wire. Twenty-one (95%) interventions were successful in the application of 3D imaging. Patients in the CT group received less contrast volume and had a shorter procedural time, though the differences were not statistically significant. Those in the MRI group had significantly lower weight adjusted radiation exposure.ConclusionsWith intuitive segmentation and direct 2D–3D fusion of MRI or CT datasets, VesselNavigator facilitates PPVI. Our initial data show that utilization of CT-derived roadmaps may lead to less contrast exposure and shorter procedural time, whereas application of MRI datasets may lead to lower radiation exposure.
Background: Patients with type 1 diabetes mellitus (T1DM) often develop atherosclerosis at an early age. In the subclinical stage of the process, minimal/non-morphological changes can be noticed, but the arterial wall function can be impaired. Applanation tonometry allows to assess the arterial tree stiffness; however, the Two-Dimensional Speckle Tracking (2DST) is an increasingly accepted alternative. This study evaluated arterial wall stiffness using these 2 techniques in children with T1DM. Material/Methods: We performed applanation tonometry and carotid arteries sonography with evaluation of the carotid intimamedia thickness (cIMT) and use of the 2DST in 50 children with T1DM and in 50 healthy sex-and age-matched controls. We also assessed the reliability of 2DST in 10 random subjects. Results: Children with T1DM had increased arterial wall stiffness, which was confirmed by tonometry (PWV: p=0.0386) and 2DST (Strain: p=0.0004; Strain rate: p=0.0081). There was no significant difference in cIMT between groups (0.45±0.06 vs. 0.43±0.05, p=0.073 in children with T1DM and controls, respectively). 2DST presented good intraclass correlation coefficient between researchers and within a single researcher. Conclusions: Children with T1DM presenting with subclinical stage of atherosclerosis were found to have arterial wall stiffening. The 2DST, the same as applanation tonometry, allows to recognize this condition but in a more accessible and reproducible manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.